Trigonometry Questions from Dec 03,2024

Browse the Trigonometry Q&A Archive for Dec 03,2024, featuring a collection of homework questions and answers from this day. Find detailed solutions to enhance your understanding.

error msg
Série Exercicex \( 1 / \) Montrer que pour tout réel \( x \) on a \( \sqrt{2} \sin \left(x+\frac{3 \pi}{4}\right)=\cos x-\sin x \) \( 2 / \) Soit \( f(x)=\cos 2 x-\sin 2 x+1 \) a/Calculer \( f\left(\frac{\pi}{12}\right) \) b/Vérifier que \( f(x)=2 \sqrt{2} \cos x \sin \left(x+\frac{3 \pi}{4}\right) \) c/Déduire \( \cos \left(\frac{\pi}{12}\right) \) \( 3 / \) a/Montrer que pour tout réel \( x \) de \( ] 0, \frac{\pi}{4}\left[\right. \) on \( a: \quad \frac{2 \cos 2 x}{\cos 2 x-\sin 2 x+1}=1+\tan x \) b/En déduire que tan \( \left(\frac{\pi}{12}\right)=2-\sqrt{3} \) ts) Convert \( 4 \cos ^{2} \theta+9 \sin ^{2} \theta=\frac{36}{r^{2}} \) into a rectangular equation. Show all work for full credit. 16. Use the identity for \( \sin (x-y) \) to show that sine is an odd function (i.e., \( \sin (-x)=-\sin (x)) \). Hint: let \( x=0^{\circ} \). If the value of \( \cos \theta=-\frac{\sqrt{3}}{2} \), which of the following could be true? ont le même point image sur un cercle trigonomé- trique. \( \begin{array}{llll}\cdot \frac{\pi}{3} & \cdot 0 & \cdot-\frac{5 \pi}{3} & \cdot \pi \\ \cdot \frac{19 \pi}{4} & \cdot-\frac{23 \pi}{6} & \cdot \frac{7 \pi}{3} & \cdot-\frac{3 \pi}{4} \\ \cdot-8 \pi & \cdot \frac{\pi}{6} & \cdot \frac{13 \pi}{4} & \cdot-\frac{19 \pi}{4} \\ & & \end{array} \) \( -\frac{\pi}{2}<\theta \leq \frac{\pi}{2} \). Find the value of \( \theta \) in radians. \( \cot (\theta)=0 \) Write your answer in simplified, rationalized form. Do not round. \( \theta=\square \) What is the period of the function \( f(x)=2-\sin \left(\frac{1}{2} x\right) \) ? \( -90^{\circ} \leq \theta \leq 90^{\circ} \). Find the value of \( \theta \) in degrees. \( \csc (\theta)=\frac{2 \sqrt{3}}{3} \) \( \theta= \) Submit 2. \( x=\frac{\operatorname{sen} 30^{\circ}+\frac{1}{2}}{\operatorname{tg} 30^{\circ}-\cot 50^{\circ}} \) \( \frac { 1 + 2 \sin ^ { 2 } \alpha } { \cos \alpha + \sin \alpha } + \frac { 1 - 2 \cos ^ { 2 } \alpha } { - \cos \alpha + \sin \alpha } \)
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy