Question
upstudy study bank question image url

\( \int \frac { \sqrt { 4 x ^ { 2 } - 9 } } { x ^ { 3 } } d x , x > \frac { 3 } { 2 } \)

Ask by Patel Owen. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The integral of \( \frac{\sqrt{4x^2-9}}{x^3} \) with respect to \( x \) is: \[ \frac{2}{3}\text{arcsec}\left(\frac{2}{3}x\right) - \frac{1}{3}\sin\left(2\text{arcsec}\left(\frac{2}{3}x\right)\right) + C \] where \( C \) is a constant.

Solution

Calculate the integral \( \int \frac {\sqrt{4x^2-9}}{x^3}dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{\sqrt{4x^{2}-9}}{x^{3}} dx\) - step1: Transform the expression: \(\int \frac{8\sqrt{\sec^{2}\left(t\right)-1}}{9\sec^{3}\left(t\right)}\times \frac{3}{2}\sec\left(t\right)\tan\left(t\right) dt\) - step2: Simplify the expression: \(\int \frac{4\sqrt{\sec^{2}\left(t\right)-1}\times \tan\left(t\right)}{3\sec^{2}\left(t\right)} dt\) - step3: Simplify the expression: \(\int \frac{2}{3}\left|\tan\left(t\right)\right|\times \sin\left(2t\right) dt\) - step4: Remove the absolute value bars: \(\int \frac{2}{3}\tan\left(t\right)\sin\left(2t\right) dt\) - step5: Simplify the expression: \(\int \frac{4}{3}\sin^{2}\left(t\right) dt\) - step6: Use properties of integrals: \(\frac{4}{3}\times \int \sin^{2}\left(t\right) dt\) - step7: Evaluate the integral: \(\frac{4}{3}\left(\frac{t}{2}-\frac{\sin\left(2t\right)}{4}\right)\) - step8: Simplify the expression: \(\frac{4}{3}\left(\frac{t}{2}-\frac{1}{4}\sin\left(2t\right)\right)\) - step9: Use the distributive property: \(\frac{4}{3}\times \frac{t}{2}+\frac{4}{3}\left(-\frac{1}{4}\sin\left(2t\right)\right)\) - step10: Multiply the terms: \(\frac{2t}{3}+\frac{4}{3}\left(-\frac{1}{4}\sin\left(2t\right)\right)\) - step11: Multiply the terms: \(\frac{2t}{3}-\frac{1}{3}\sin\left(2t\right)\) - step12: Substitute back: \(\frac{2\operatorname{arcsec}\left(\frac{2}{3}x\right)}{3}-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)\) - step13: Simplify the expression: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)\) - step14: Add the constant of integral C: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right) + C, C \in \mathbb{R}\) The integral of \( \frac{\sqrt{4x^2-9}}{x^3} \) with respect to \( x \) is given by: \[ \frac{2}{3}\text{arcsec}\left(\frac{2}{3}x\right) - \frac{1}{3}\sin\left(2\text{arcsec}\left(\frac{2}{3}x\right)\right) + C \] where \( C \) is an arbitrary constant.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To solve the integral \( \int \frac { \sqrt { 4 x ^ { 2 } - 9 } } { x ^ { 3 } } d x \), we'll start with a substitution that simplifies the square root. We can let \( u = 4x^2 - 9 \). Then, differentiating gives us \( du = 8x \, dx \) or \( dx = \frac{du}{8x} \). However, we need to express \( x \) in terms of \( u \). From our substitution, rearranging gives us: \[ x = \frac{\sqrt{u + 9}}{2} \] Now, substituting \( x \) into our integral will help us rewrite it, but first, it's useful to express everything in terms of \( u \): Recall that: \[ \sqrt{4x^2 - 9} = \sqrt{u} \] and \[ x^3 = \left( \frac{\sqrt{u + 9}}{2} \right)^3 = \frac{(u + 9)^{3/2}}{8} \] Now rewrite the integral: \[ \int \frac{\sqrt{u}}{x^3} dx = \int \frac{\sqrt{u}}{\frac{(u + 9)^{3/2}}{8}} \cdot \frac{du}{8x} = \int \frac{8\sqrt{u}}{(u + 9)^{3/2}} \cdot \frac{du}{8x} \] As we see, this integral can become complex. Thus, it may be beneficial to revert to a trigonometric substitution instead. We can set \( x = \frac{3}{2} \sec(\theta) \), which then implies \( 4x^2 - 9 = 4 \left( \frac{3^2}{2^2} \sec^2(\theta) - \frac{9}{4} \right) = 4 \sec^2(\theta) - 9 = \tan^2(\theta)\). This yields a fresh transformation and leads to a more manageable integral where trigonometric integrals might come into play. By utilizing these methods, the integral can be computed and simplified through those trigonometric identities. Remember, as with all calculus problems, practice makes perfect, so don't be afraid to try using different substitutions or methods to really crack that integral!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy