Pregunta
upstudy study bank question image url

\( \int \frac { \sqrt { 4 x ^ { 2 } - 9 } } { x ^ { 3 } } d x , x > \frac { 3 } { 2 } \)

Ask by Patel Owen. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral of \( \frac{\sqrt{4x^2-9}}{x^3} \) with respect to \( x \) is: \[ \frac{2}{3}\text{arcsec}\left(\frac{2}{3}x\right) - \frac{1}{3}\sin\left(2\text{arcsec}\left(\frac{2}{3}x\right)\right) + C \] where \( C \) is a constant.

Solución

Calculate the integral \( \int \frac {\sqrt{4x^2-9}}{x^3}dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{\sqrt{4x^{2}-9}}{x^{3}} dx\) - step1: Transform the expression: \(\int \frac{8\sqrt{\sec^{2}\left(t\right)-1}}{9\sec^{3}\left(t\right)}\times \frac{3}{2}\sec\left(t\right)\tan\left(t\right) dt\) - step2: Simplify the expression: \(\int \frac{4\sqrt{\sec^{2}\left(t\right)-1}\times \tan\left(t\right)}{3\sec^{2}\left(t\right)} dt\) - step3: Simplify the expression: \(\int \frac{2}{3}\left|\tan\left(t\right)\right|\times \sin\left(2t\right) dt\) - step4: Remove the absolute value bars: \(\int \frac{2}{3}\tan\left(t\right)\sin\left(2t\right) dt\) - step5: Simplify the expression: \(\int \frac{4}{3}\sin^{2}\left(t\right) dt\) - step6: Use properties of integrals: \(\frac{4}{3}\times \int \sin^{2}\left(t\right) dt\) - step7: Evaluate the integral: \(\frac{4}{3}\left(\frac{t}{2}-\frac{\sin\left(2t\right)}{4}\right)\) - step8: Simplify the expression: \(\frac{4}{3}\left(\frac{t}{2}-\frac{1}{4}\sin\left(2t\right)\right)\) - step9: Use the distributive property: \(\frac{4}{3}\times \frac{t}{2}+\frac{4}{3}\left(-\frac{1}{4}\sin\left(2t\right)\right)\) - step10: Multiply the terms: \(\frac{2t}{3}+\frac{4}{3}\left(-\frac{1}{4}\sin\left(2t\right)\right)\) - step11: Multiply the terms: \(\frac{2t}{3}-\frac{1}{3}\sin\left(2t\right)\) - step12: Substitute back: \(\frac{2\operatorname{arcsec}\left(\frac{2}{3}x\right)}{3}-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)\) - step13: Simplify the expression: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)\) - step14: Add the constant of integral C: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right) + C, C \in \mathbb{R}\) The integral of \( \frac{\sqrt{4x^2-9}}{x^3} \) with respect to \( x \) is given by: \[ \frac{2}{3}\text{arcsec}\left(\frac{2}{3}x\right) - \frac{1}{3}\sin\left(2\text{arcsec}\left(\frac{2}{3}x\right)\right) + C \] where \( C \) is an arbitrary constant.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the integral \( \int \frac { \sqrt { 4 x ^ { 2 } - 9 } } { x ^ { 3 } } d x \), we'll start with a substitution that simplifies the square root. We can let \( u = 4x^2 - 9 \). Then, differentiating gives us \( du = 8x \, dx \) or \( dx = \frac{du}{8x} \). However, we need to express \( x \) in terms of \( u \). From our substitution, rearranging gives us: \[ x = \frac{\sqrt{u + 9}}{2} \] Now, substituting \( x \) into our integral will help us rewrite it, but first, it's useful to express everything in terms of \( u \): Recall that: \[ \sqrt{4x^2 - 9} = \sqrt{u} \] and \[ x^3 = \left( \frac{\sqrt{u + 9}}{2} \right)^3 = \frac{(u + 9)^{3/2}}{8} \] Now rewrite the integral: \[ \int \frac{\sqrt{u}}{x^3} dx = \int \frac{\sqrt{u}}{\frac{(u + 9)^{3/2}}{8}} \cdot \frac{du}{8x} = \int \frac{8\sqrt{u}}{(u + 9)^{3/2}} \cdot \frac{du}{8x} \] As we see, this integral can become complex. Thus, it may be beneficial to revert to a trigonometric substitution instead. We can set \( x = \frac{3}{2} \sec(\theta) \), which then implies \( 4x^2 - 9 = 4 \left( \frac{3^2}{2^2} \sec^2(\theta) - \frac{9}{4} \right) = 4 \sec^2(\theta) - 9 = \tan^2(\theta)\). This yields a fresh transformation and leads to a more manageable integral where trigonometric integrals might come into play. By utilizing these methods, the integral can be computed and simplified through those trigonometric identities. Remember, as with all calculus problems, practice makes perfect, so don't be afraid to try using different substitutions or methods to really crack that integral!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad