Question
upstudy study bank question image url

\( \int \frac { \sqrt { 4 x ^ { 2 } - 9 } } { x ^ { 3 } } d x , x = \frac { 3 } { 2 } \)

Ask by Lawson Fernandez. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The integral evaluates to \( C \) when \( x = \frac{3}{2} \).

Solution

Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{\sqrt{4x^{2}-9}}{x^{3}} dx\) - step1: Transform the expression: \(\int \frac{8\sqrt{\sec^{2}\left(t\right)-1}}{9\sec^{3}\left(t\right)}\times \frac{3}{2}\sec\left(t\right)\tan\left(t\right) dt\) - step2: Simplify the expression: \(\int \frac{4\sqrt{\sec^{2}\left(t\right)-1}\times \tan\left(t\right)}{3\sec^{2}\left(t\right)} dt\) - step3: Simplify the expression: \(\int \frac{2}{3}\left|\tan\left(t\right)\right|\times \sin\left(2t\right) dt\) - step4: Remove the absolute value bars: \(\int \frac{2}{3}\tan\left(t\right)\sin\left(2t\right) dt\) - step5: Simplify the expression: \(\int \frac{4}{3}\sin^{2}\left(t\right) dt\) - step6: Use properties of integrals: \(\frac{4}{3}\times \int \sin^{2}\left(t\right) dt\) - step7: Evaluate the integral: \(\frac{4}{3}\left(\frac{t}{2}-\frac{\sin\left(2t\right)}{4}\right)\) - step8: Simplify the expression: \(\frac{4}{3}\left(\frac{t}{2}-\frac{1}{4}\sin\left(2t\right)\right)\) - step9: Use the distributive property: \(\frac{4}{3}\times \frac{t}{2}+\frac{4}{3}\left(-\frac{1}{4}\sin\left(2t\right)\right)\) - step10: Multiply the terms: \(\frac{2t}{3}+\frac{4}{3}\left(-\frac{1}{4}\sin\left(2t\right)\right)\) - step11: Multiply the terms: \(\frac{2t}{3}-\frac{1}{3}\sin\left(2t\right)\) - step12: Substitute back: \(\frac{2\operatorname{arcsec}\left(\frac{2}{3}x\right)}{3}-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)\) - step13: Simplify the expression: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)\) - step14: Add the constant of integral C: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right) + C, C \in \mathbb{R}\) Substitute \( x=\frac{3}{2} \) into the expression \( \frac{2}{3}\operatorname{arcsec}(\frac{2}{3}x)-\frac{1}{3}\sin(2\operatorname{arcsec}(\frac{2}{3}x)) + C \). Evaluate the expression by following steps: - step0: Evaluate: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)+C\) - step1: Substitute: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}\times \frac{3}{2}\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}\times \frac{3}{2}\right)\right)+C\) - step2: Multiply the numbers: \(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}\times \frac{3}{2}\right)\right)+C\) - step3: Multiply the numbers: \(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(1\right)\right)+C\) - step4: Calculate: \(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(2\times 0\right)+C\) - step5: Multiply: \(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(0\right)+C\) - step6: Calculate: \(\frac{2}{3}\times 0-\frac{1}{3}\sin\left(0\right)+C\) - step7: Calculate: \(\frac{2}{3}\times 0-\frac{1}{3}\times 0+C\) - step8: Multiply: \(0-\frac{1}{3}\times 0+C\) - step9: Multiply: \(0+0+C\) - step10: Remove 0: \(C\) To solve the integral \[ \int \frac { \sqrt { 4 x ^ { 2 } - 9 } } { x ^ { 3 } } d x, \] we first find the indefinite integral. The result is: \[ \frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right) - \frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right) + C, \] where \( C \) is the constant of integration. Next, we substitute \( x = \frac{3}{2} \) into the expression: \[ \frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3} \cdot \frac{3}{2}\right) - \frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3} \cdot \frac{3}{2}\right)\right) + C. \] Calculating \( \frac{2}{3} \cdot \frac{3}{2} \) gives us \( 1 \). The arcsecant of \( 1 \) is \( 0 \), so we have: \[ \frac{2}{3} \cdot 0 - \frac{1}{3} \sin(0) + C = C. \] Thus, the final result of the integral evaluated at \( x = \frac{3}{2} \) is simply \( C \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To solve the integral \( \int \frac { \sqrt { 4 x ^ { 2 } - 9 } } { x ^ { 3 } } d x \), we can use a substitution method. Let’s get started with it! 1. First, observe that \(4x^2 - 9\) can be factored as \( (2x - 3)(2x + 3) \). 2. It's handy to use trigonometric substitution since you have a square root. Set \( x = \frac{3}{2} \sec(\theta) \), which will transform the integral into a more manageable form. 3. Compute the differential \(dx\) and the limits accordingly. Integrating by substitution, along with applying the limits will eventually yield the result at \(x = \frac{3}{2}\). This problem has some complexity, but tackling it with systematic substitutions and trigonometric identities makes it rewarding! If you want specific numerical answers, you'd typically also have to evaluate definite integral limits from the initial substitution back to the original variable. Once you work through it, you’ll see how elegantly calculus can weave through complex shapes!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy