Answer
The integral evaluates to \( C \) when \( x = \frac{3}{2} \).
Solution
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int \frac{\sqrt{4x^{2}-9}}{x^{3}} dx\)
- step1: Transform the expression:
\(\int \frac{8\sqrt{\sec^{2}\left(t\right)-1}}{9\sec^{3}\left(t\right)}\times \frac{3}{2}\sec\left(t\right)\tan\left(t\right) dt\)
- step2: Simplify the expression:
\(\int \frac{4\sqrt{\sec^{2}\left(t\right)-1}\times \tan\left(t\right)}{3\sec^{2}\left(t\right)} dt\)
- step3: Simplify the expression:
\(\int \frac{2}{3}\left|\tan\left(t\right)\right|\times \sin\left(2t\right) dt\)
- step4: Remove the absolute value bars:
\(\int \frac{2}{3}\tan\left(t\right)\sin\left(2t\right) dt\)
- step5: Simplify the expression:
\(\int \frac{4}{3}\sin^{2}\left(t\right) dt\)
- step6: Use properties of integrals:
\(\frac{4}{3}\times \int \sin^{2}\left(t\right) dt\)
- step7: Evaluate the integral:
\(\frac{4}{3}\left(\frac{t}{2}-\frac{\sin\left(2t\right)}{4}\right)\)
- step8: Simplify the expression:
\(\frac{4}{3}\left(\frac{t}{2}-\frac{1}{4}\sin\left(2t\right)\right)\)
- step9: Use the distributive property:
\(\frac{4}{3}\times \frac{t}{2}+\frac{4}{3}\left(-\frac{1}{4}\sin\left(2t\right)\right)\)
- step10: Multiply the terms:
\(\frac{2t}{3}+\frac{4}{3}\left(-\frac{1}{4}\sin\left(2t\right)\right)\)
- step11: Multiply the terms:
\(\frac{2t}{3}-\frac{1}{3}\sin\left(2t\right)\)
- step12: Substitute back:
\(\frac{2\operatorname{arcsec}\left(\frac{2}{3}x\right)}{3}-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)\)
- step13: Simplify the expression:
\(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)\)
- step14: Add the constant of integral C:
\(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right) + C, C \in \mathbb{R}\)
Substitute \( x=\frac{3}{2} \) into the expression \( \frac{2}{3}\operatorname{arcsec}(\frac{2}{3}x)-\frac{1}{3}\sin(2\operatorname{arcsec}(\frac{2}{3}x)) + C \).
Evaluate the expression by following steps:
- step0: Evaluate:
\(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)+C\)
- step1: Substitute:
\(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}\times \frac{3}{2}\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}\times \frac{3}{2}\right)\right)+C\)
- step2: Multiply the numbers:
\(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}\times \frac{3}{2}\right)\right)+C\)
- step3: Multiply the numbers:
\(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(1\right)\right)+C\)
- step4: Calculate:
\(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(2\times 0\right)+C\)
- step5: Multiply:
\(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(0\right)+C\)
- step6: Calculate:
\(\frac{2}{3}\times 0-\frac{1}{3}\sin\left(0\right)+C\)
- step7: Calculate:
\(\frac{2}{3}\times 0-\frac{1}{3}\times 0+C\)
- step8: Multiply:
\(0-\frac{1}{3}\times 0+C\)
- step9: Multiply:
\(0+0+C\)
- step10: Remove 0:
\(C\)
To solve the integral
\[
\int \frac { \sqrt { 4 x ^ { 2 } - 9 } } { x ^ { 3 } } d x,
\]
we first find the indefinite integral. The result is:
\[
\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right) - \frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right) + C,
\]
where \( C \) is the constant of integration.
Next, we substitute \( x = \frac{3}{2} \) into the expression:
\[
\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3} \cdot \frac{3}{2}\right) - \frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3} \cdot \frac{3}{2}\right)\right) + C.
\]
Calculating \( \frac{2}{3} \cdot \frac{3}{2} \) gives us \( 1 \). The arcsecant of \( 1 \) is \( 0 \), so we have:
\[
\frac{2}{3} \cdot 0 - \frac{1}{3} \sin(0) + C = C.
\]
Thus, the final result of the integral evaluated at \( x = \frac{3}{2} \) is simply \( C \).
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution