Pregunta
upstudy study bank question image url

\( \int \frac { \sqrt { 4 x ^ { 2 } - 9 } } { x ^ { 3 } } d x , x = \frac { 3 } { 2 } \)

Ask by Lawson Fernandez. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The integral evaluates to \( C \) when \( x = \frac{3}{2} \).

Solución

Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{\sqrt{4x^{2}-9}}{x^{3}} dx\) - step1: Transform the expression: \(\int \frac{8\sqrt{\sec^{2}\left(t\right)-1}}{9\sec^{3}\left(t\right)}\times \frac{3}{2}\sec\left(t\right)\tan\left(t\right) dt\) - step2: Simplify the expression: \(\int \frac{4\sqrt{\sec^{2}\left(t\right)-1}\times \tan\left(t\right)}{3\sec^{2}\left(t\right)} dt\) - step3: Simplify the expression: \(\int \frac{2}{3}\left|\tan\left(t\right)\right|\times \sin\left(2t\right) dt\) - step4: Remove the absolute value bars: \(\int \frac{2}{3}\tan\left(t\right)\sin\left(2t\right) dt\) - step5: Simplify the expression: \(\int \frac{4}{3}\sin^{2}\left(t\right) dt\) - step6: Use properties of integrals: \(\frac{4}{3}\times \int \sin^{2}\left(t\right) dt\) - step7: Evaluate the integral: \(\frac{4}{3}\left(\frac{t}{2}-\frac{\sin\left(2t\right)}{4}\right)\) - step8: Simplify the expression: \(\frac{4}{3}\left(\frac{t}{2}-\frac{1}{4}\sin\left(2t\right)\right)\) - step9: Use the distributive property: \(\frac{4}{3}\times \frac{t}{2}+\frac{4}{3}\left(-\frac{1}{4}\sin\left(2t\right)\right)\) - step10: Multiply the terms: \(\frac{2t}{3}+\frac{4}{3}\left(-\frac{1}{4}\sin\left(2t\right)\right)\) - step11: Multiply the terms: \(\frac{2t}{3}-\frac{1}{3}\sin\left(2t\right)\) - step12: Substitute back: \(\frac{2\operatorname{arcsec}\left(\frac{2}{3}x\right)}{3}-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)\) - step13: Simplify the expression: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)\) - step14: Add the constant of integral C: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right) + C, C \in \mathbb{R}\) Substitute \( x=\frac{3}{2} \) into the expression \( \frac{2}{3}\operatorname{arcsec}(\frac{2}{3}x)-\frac{1}{3}\sin(2\operatorname{arcsec}(\frac{2}{3}x)) + C \). Evaluate the expression by following steps: - step0: Evaluate: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right)+C\) - step1: Substitute: \(\frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}\times \frac{3}{2}\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}\times \frac{3}{2}\right)\right)+C\) - step2: Multiply the numbers: \(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}\times \frac{3}{2}\right)\right)+C\) - step3: Multiply the numbers: \(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(2\operatorname{arcsec}\left(1\right)\right)+C\) - step4: Calculate: \(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(2\times 0\right)+C\) - step5: Multiply: \(\frac{2}{3}\operatorname{arcsec}\left(1\right)-\frac{1}{3}\sin\left(0\right)+C\) - step6: Calculate: \(\frac{2}{3}\times 0-\frac{1}{3}\sin\left(0\right)+C\) - step7: Calculate: \(\frac{2}{3}\times 0-\frac{1}{3}\times 0+C\) - step8: Multiply: \(0-\frac{1}{3}\times 0+C\) - step9: Multiply: \(0+0+C\) - step10: Remove 0: \(C\) To solve the integral \[ \int \frac { \sqrt { 4 x ^ { 2 } - 9 } } { x ^ { 3 } } d x, \] we first find the indefinite integral. The result is: \[ \frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3}x\right) - \frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3}x\right)\right) + C, \] where \( C \) is the constant of integration. Next, we substitute \( x = \frac{3}{2} \) into the expression: \[ \frac{2}{3}\operatorname{arcsec}\left(\frac{2}{3} \cdot \frac{3}{2}\right) - \frac{1}{3}\sin\left(2\operatorname{arcsec}\left(\frac{2}{3} \cdot \frac{3}{2}\right)\right) + C. \] Calculating \( \frac{2}{3} \cdot \frac{3}{2} \) gives us \( 1 \). The arcsecant of \( 1 \) is \( 0 \), so we have: \[ \frac{2}{3} \cdot 0 - \frac{1}{3} \sin(0) + C = C. \] Thus, the final result of the integral evaluated at \( x = \frac{3}{2} \) is simply \( C \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the integral \( \int \frac { \sqrt { 4 x ^ { 2 } - 9 } } { x ^ { 3 } } d x \), we can use a substitution method. Let’s get started with it! 1. First, observe that \(4x^2 - 9\) can be factored as \( (2x - 3)(2x + 3) \). 2. It's handy to use trigonometric substitution since you have a square root. Set \( x = \frac{3}{2} \sec(\theta) \), which will transform the integral into a more manageable form. 3. Compute the differential \(dx\) and the limits accordingly. Integrating by substitution, along with applying the limits will eventually yield the result at \(x = \frac{3}{2}\). This problem has some complexity, but tackling it with systematic substitutions and trigonometric identities makes it rewarding! If you want specific numerical answers, you'd typically also have to evaluate definite integral limits from the initial substitution back to the original variable. Once you work through it, you’ll see how elegantly calculus can weave through complex shapes!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad