Question
upstudy study bank question image url

Use the definition of the definite integral to evaluate \( \int_{0}^{4}\left(x^{2}-5\right) d x \). Evaluate the right Riemann Sum. Choose the correct answer below. A. \( \int_{a}^{\text {b }} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{n}{4 k}\right)^{2}-5\right) \frac{n}{4} \) B. \( f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{4 k}{n}\right)^{2}-5\right) \frac{4}{n} \) C. \( \int_{a}^{b} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{n}{4}\right)^{2}-5\right) \frac{n}{4 k} \) D. \( \int_{a}^{b} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{4}{n}\right)^{2}-5\right) \frac{4 k}{n} \) Fvalıato the interral

Ask by Fleming Vaughn. in the United States
Feb 18,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The correct option is B: \[ \int_{a}^{b} f(x) \, dx = \lim_{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k} = \lim_{n \rightarrow \infty} \sum_{k=1}^{n} \left(\left(\frac{4k}{n}\right)^2 - 5\right) \frac{4}{n} \]

Solution

To evaluate the definite integral \( \int_{0}^{4}\left(x^{2}-5\right) d x \) using the definition of the definite integral, we will follow these steps: 1. **Identify the function and interval**: The function is \( f(x) = x^2 - 5 \) and the interval is from \( a = 0 \) to \( b = 4 \). 2. **Set up the Riemann sum**: We will use the right Riemann sum to approximate the integral. The interval \([0, 4]\) will be divided into \( n \) subintervals, each of width \( \Delta x = \frac{b - a}{n} = \frac{4 - 0}{n} = \frac{4}{n} \). 3. **Determine the right endpoints**: The right endpoint of the \( k \)-th subinterval is given by: \[ x_k = a + k \Delta x = 0 + k \cdot \frac{4}{n} = \frac{4k}{n} \] 4. **Evaluate the function at the right endpoints**: We need to evaluate \( f(x_k) \): \[ f\left(x_k\right) = f\left(\frac{4k}{n}\right) = \left(\frac{4k}{n}\right)^2 - 5 = \frac{16k^2}{n^2} - 5 \] 5. **Set up the Riemann sum**: The Riemann sum is given by: \[ \sum_{k=1}^{n} f\left(x_k\right) \Delta x = \sum_{k=1}^{n} \left(\frac{16k^2}{n^2} - 5\right) \cdot \frac{4}{n} \] 6. **Combine the terms**: This becomes: \[ \sum_{k=1}^{n} \left(\frac{16k^2}{n^2} - 5\right) \cdot \frac{4}{n} = \sum_{k=1}^{n} \left(\frac{64k^2}{n^3} - \frac{20}{n}\right) \] 7. **Take the limit as \( n \to \infty \)**: The definite integral is then: \[ \int_{0}^{4} (x^2 - 5) \, dx = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\frac{64k^2}{n^3} - \frac{20}{n}\right) \] Now, let's evaluate the limit and find the correct option from the choices provided. ### Evaluating the Integral We can also directly evaluate the integral: \[ \int_{0}^{4} (x^2 - 5) \, dx = \left[ \frac{x^3}{3} - 5x \right]_{0}^{4} \] Calculating this: 1. Evaluate at \( x = 4 \): \[ \frac{4^3}{3} - 5 \cdot 4 = \frac{64}{3} - 20 = \frac{64}{3} - \frac{60}{3} = \frac{4}{3} \] 2. Evaluate at \( x = 0 \): \[ \frac{0^3}{3} - 5 \cdot 0 = 0 \] Thus, the definite integral evaluates to: \[ \int_{0}^{4} (x^2 - 5) \, dx = \frac{4}{3} - 0 = \frac{4}{3} \] ### Choosing the Correct Option Now, let's analyze the options provided: - **Option A**: Incorrect, as it uses \( \frac{n}{4k} \). - **Option B**: Correct, as it uses \( \left(\frac{4k}{n}\right)^2 - 5 \) and \( \Delta x = \frac{4}{n} \). - **Option C**: Incorrect, as it uses \( \frac{n}{4} \). - **Option D**: Incorrect, as it uses \( \left(\frac{4}{n}\right)^2 - 5 \) incorrectly. Thus, the correct answer is **B**: \[ \int_{a}^{b} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{4 k}{n}\right)^{2}-5\right) \frac{4}{n} \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To evaluate the definite integral \(\int_{0}^{4}(x^{2}-5) \, dx\) using the definition, we first recognize that we are looking for the limit of the right Riemann sum as \(n\) approaches infinity. For this integral, the width of each subinterval is \(\Delta x = \frac{4}{n}\), and the function value at each right endpoint is \(f\left(\frac{4k}{n}\right) = \left(\frac{4k}{n}\right)^{2} - 5\). The choice that correctly reflects this setup is option B, which gives: \[ \lim_{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{4k}{n}\right)^{2}-5\right) \frac{4}{n} \] Now, let's evaluate the definite integral. This integral can be computed as follows: \[ \int_{0}^{4}(x^{2}-5) \, dx = \left[\frac{x^{3}}{3} - 5x\right]_{0}^{4} = \left[\frac{64}{3} - 20\right] - \left[0 - 0\right] = \frac{64}{3} - \frac{60}{3} = \frac{4}{3} \] So, the value of the integral is \(\frac{4}{3}\). The evaluation shows practical applications of the Riemann sum in calculus and how limits bring the concept of area under a curve to life, right alongside definite integrals woven into various science and engineering calculations.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy