Use the definition of the definite integral to evaluate \( \int_{0}^{4}\left(x^{2}-5\right) d x \). Evaluate the right Riemann Sum. Choose the correct answer below. A. \( \int_{a}^{\text {b }} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{n}{4 k}\right)^{2}-5\right) \frac{n}{4} \) B. \( f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{4 k}{n}\right)^{2}-5\right) \frac{4}{n} \) C. \( \int_{a}^{b} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{n}{4}\right)^{2}-5\right) \frac{n}{4 k} \) D. \( \int_{a}^{b} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{4}{n}\right)^{2}-5\right) \frac{4 k}{n} \) Fvalıato the interral
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Mind Expander
To evaluate the definite integral \(\int_{0}^{4}(x^{2}-5) \, dx\) using the definition, we first recognize that we are looking for the limit of the right Riemann sum as \(n\) approaches infinity. For this integral, the width of each subinterval is \(\Delta x = \frac{4}{n}\), and the function value at each right endpoint is \(f\left(\frac{4k}{n}\right) = \left(\frac{4k}{n}\right)^{2} - 5\). The choice that correctly reflects this setup is option B, which gives: \[ \lim_{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{4k}{n}\right)^{2}-5\right) \frac{4}{n} \] Now, let's evaluate the definite integral. This integral can be computed as follows: \[ \int_{0}^{4}(x^{2}-5) \, dx = \left[\frac{x^{3}}{3} - 5x\right]_{0}^{4} = \left[\frac{64}{3} - 20\right] - \left[0 - 0\right] = \frac{64}{3} - \frac{60}{3} = \frac{4}{3} \] So, the value of the integral is \(\frac{4}{3}\). The evaluation shows practical applications of the Riemann sum in calculus and how limits bring the concept of area under a curve to life, right alongside definite integrals woven into various science and engineering calculations.