Question
upstudy study bank question image url

Inciones representa la integral \( \int \frac{\cos (\ln 9 x)}{x} d x \) ?

Ask by Logan Chadwick. in Mexico
Feb 22,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral \( \int \frac{\cos (\ln 9x)}{x} dx \) se resuelve cambiando de variable \( u = \ln 9x \), lo que da como resultado \( \sin (\ln 9x) + C \).

Solution

Para resolver la integral   ∫ (cos(ln(9x)) / x) dx podemos usar el cambio de variable:   u = ln(9x). Derivando u respecto a x:   du/dx = d/dx [ln(9x)] = 1/(9x) · 9 = 1/x  ⟹  du = dx/x. Con este cambio, la integral se transforma en   ∫ cos(u) du, la cual es sencilla de integrar:   ∫ cos(u) du = sin(u) + C. Finalmente, se sustituye u = ln(9x) en el resultado:   sin(ln(9x)) + C. Por lo tanto, la solución de la integral es:   ∫ (cos(ln(9x)) / x) dx = sin(ln(9x)) + C.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Para resolver la integral \( \int \frac{\cos (\ln 9 x)}{x} d x \), podemos hacer el cambio de variable \( u = \ln (9x) \). Entonces, derivamos \( u \) para obtener \( du = \frac{1}{x} dx \). Por lo tanto, la integral se simplifica a: \[ \int \cos(u) du \] La integral de \( \cos(u) \) es \( \sin(u) + C \). Regresando a nuestra variable original, tenemos: \[ \sin(\ln(9x)) + C \] Así que la solución a la integral original es \( \sin(\ln(9x)) + C \). ¡Y ahí tienes una integral que se transforma mágicamente con una simple sustitución!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy