Answer
Here are the simplified results for the integrals:
1. \( \int \frac{1}{3} x^{4} d x = \frac{x^{5}}{15} + C \)
2. \( \int x^{2} \sin(10 x) d x = -\frac{1}{10}x^{2}\cos(10x) + \frac{1}{50}x\sin(10x) + \frac{1}{500}\cos(10x) + C \)
3. \( \int x \sqrt{5+x^{2}} d x = \frac{\sqrt{(5+x^{2})^{3}}}{3} + C \)
4. \( \int x^{-1} d x = \ln{(|x|)} + C \)
These are the simplified forms of the integrals provided.
Solution
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int x^{-1} dx\)
- step1: Rewrite the expression:
\(\int \frac{1}{x} dx\)
- step2: Evaluate the integral:
\(\ln{\left(\left|x\right|\right)}\)
- step3: Add the constant of integral C:
\(\ln{\left(\left|x\right|\right)} + C, C \in \mathbb{R}\)
Calculate the integral \( \int x \sqrt{5+x^{2}} d x \).
Evaluate the integral by following steps:
- step0: Evaluate using substitution:
\(\int x\sqrt{5+x^{2}} dx\)
- step1: Rewrite the expression:
\(\int x\left(5+x^{2}\right)^{\frac{1}{2}} dx\)
- step2: Use the substitution \(dx=\frac{1}{2x} dt\) to transform the integral\(:\)
\(\int x\left(5+x^{2}\right)^{\frac{1}{2}}\times \frac{1}{2x} dt\)
- step3: Simplify:
\(\int \frac{\left(5+x^{2}\right)^{\frac{1}{2}}}{2} dt\)
- step4: Use the substitution \(t=x^{2}\) to transform the integral\(:\)
\(\int \frac{\left(5+t\right)^{\frac{1}{2}}}{2} dt\)
- step5: Rewrite the expression:
\(\int \frac{1}{2}\left(5+t\right)^{\frac{1}{2}} dt\)
- step6: Use properties of integrals:
\(\frac{1}{2}\times \int \left(5+t\right)^{\frac{1}{2}} dt\)
- step7: Use the substitution \(dt=1 dv\) to transform the integral\(:\)
\(\frac{1}{2}\times \int \left(5+t\right)^{\frac{1}{2}}\times 1 dv\)
- step8: Simplify:
\(\frac{1}{2}\times \int \left(5+t\right)^{\frac{1}{2}} dv\)
- step9: Use the substitution \(v=5+t\) to transform the integral\(:\)
\(\frac{1}{2}\times \int v^{\frac{1}{2}} dv\)
- step10: Evaluate the integral:
\(\frac{1}{2}\times \frac{v^{\frac{1}{2}+1}}{\frac{1}{2}+1}\)
- step11: Simplify:
\(\frac{1}{2}\times \frac{v^{\frac{3}{2}}}{\frac{3}{2}}\)
- step12: Multiply the terms:
\(\frac{v^{\frac{3}{2}}}{2\times \frac{3}{2}}\)
- step13: Multiply the terms:
\(\frac{v^{\frac{3}{2}}}{3}\)
- step14: Substitute back:
\(\frac{\left(5+t\right)^{\frac{3}{2}}}{3}\)
- step15: Substitute back:
\(\frac{\left(5+x^{2}\right)^{\frac{3}{2}}}{3}\)
- step16: Simplify:
\(\frac{\sqrt{\left(5+x^{2}\right)^{3}}}{3}\)
- step17: Add the constant of integral C:
\(\frac{\sqrt{\left(5+x^{2}\right)^{3}}}{3} + C, C \in \mathbb{R}\)
Calculate the integral \( \int \frac{1}{3} x^{4} d x \).
Evaluate the integral by following steps:
- step0: Evaluate using formulas and rules:
\(\int \frac{1}{3}x^{4} dx\)
- step1: Use properties of integrals:
\(\frac{1}{3}\times \int x^{4} dx\)
- step2: Evaluate the integral:
\(\frac{1}{3}\times \frac{x^{4+1}}{4+1}\)
- step3: Simplify:
\(\frac{1}{3}\times \frac{x^{5}}{5}\)
- step4: Multiply the terms:
\(\frac{x^{5}}{3\times 5}\)
- step5: Multiply the terms:
\(\frac{x^{5}}{15}\)
- step6: Add the constant of integral C:
\(\frac{x^{5}}{15} + C, C \in \mathbb{R}\)
Calculate the integral \( \int x^{2} \sin(10 x) d x \).
Evaluate the integral by following steps:
- step0: Evaluate using partial integration formula:
\(\int x^{2}\sin\left(10x\right) dx\)
- step1: Prepare for integration by parts:
\(\begin{align}&u=x^{2}\\&dv=\sin\left(10x\right)dx\end{align}\)
- step2: Calculate the derivative:
\(\begin{align}&du=2xdx\\&dv=\sin\left(10x\right)dx\end{align}\)
- step3: Evaluate the integral:
\(\begin{align}&du=2xdx\\&v=-\frac{1}{10}\cos\left(10x\right)\end{align}\)
- step4: Substitute the values into formula:
\(x^{2}\left(-\frac{1}{10}\cos\left(10x\right)\right)-\int 2x\left(-\frac{1}{10}\cos\left(10x\right)\right) dx\)
- step5: Calculate:
\(-\frac{1}{10}x^{2}\cos\left(10x\right)-\int -\frac{1}{5}x\cos\left(10x\right) dx\)
- step6: Evaluate the integral:
\(-\frac{1}{10}x^{2}\cos\left(10x\right)+\frac{1}{50}x\sin\left(10x\right)+\frac{1}{500}\cos\left(10x\right)\)
- step7: Add the constant of integral C:
\(-\frac{1}{10}x^{2}\cos\left(10x\right)+\frac{1}{50}x\sin\left(10x\right)+\frac{1}{500}\cos\left(10x\right) + C, C \in \mathbb{R}\)
Here are the results for the integrals you provided:
1. **Integral of \( \frac{1}{3} x^{4} \)**:
\[
\int \frac{1}{3} x^{4} d x = \frac{x^{5}}{15} + C, \quad C \in \mathbb{R}
\]
2. **Integral of \( x^{2} \sin(10 x) \)**:
\[
\int x^{2} \sin(10 x) d x = -\frac{1}{10}x^{2}\cos(10x) + \frac{1}{50}x\sin(10x) + \frac{1}{500}\cos(10x) + C, \quad C \in \mathbb{R}
\]
3. **Integral of \( x \sqrt{5+x^{2}} \)**:
\[
\int x \sqrt{5+x^{2}} d x = \frac{\sqrt{(5+x^{2})^{3}}}{3} + C, \quad C \in \mathbb{R}
\]
4. **Integral of \( x^{-1} \)**:
\[
\int x^{-1} d x = \ln{(|x|)} + C, \quad C \in \mathbb{R}
\]
These results represent the indefinite integrals of the given functions, with \( C \) being the constant of integration.
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution