Question
upstudy study bank question image url

5 Multiple Choice 1 point \( \int(1 / 3) x^{4} d x \) \( \int x^{2} \sin (10 x) d x \) \( \int x \sqrt{ }\left(5+x^{2}\right) d x \) \( \int x^{-1} d x \)

Ask by Mccarthy Wright. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified results for the integrals: 1. \( \int \frac{1}{3} x^{4} d x = \frac{x^{5}}{15} + C \) 2. \( \int x^{2} \sin(10 x) d x = -\frac{1}{10}x^{2}\cos(10x) + \frac{1}{50}x\sin(10x) + \frac{1}{500}\cos(10x) + C \) 3. \( \int x \sqrt{5+x^{2}} d x = \frac{\sqrt{(5+x^{2})^{3}}}{3} + C \) 4. \( \int x^{-1} d x = \ln{(|x|)} + C \) These are the simplified forms of the integrals provided.

Solution

Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int x^{-1} dx\) - step1: Rewrite the expression: \(\int \frac{1}{x} dx\) - step2: Evaluate the integral: \(\ln{\left(\left|x\right|\right)}\) - step3: Add the constant of integral C: \(\ln{\left(\left|x\right|\right)} + C, C \in \mathbb{R}\) Calculate the integral \( \int x \sqrt{5+x^{2}} d x \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int x\sqrt{5+x^{2}} dx\) - step1: Rewrite the expression: \(\int x\left(5+x^{2}\right)^{\frac{1}{2}} dx\) - step2: Use the substitution \(dx=\frac{1}{2x} dt\) to transform the integral\(:\) \(\int x\left(5+x^{2}\right)^{\frac{1}{2}}\times \frac{1}{2x} dt\) - step3: Simplify: \(\int \frac{\left(5+x^{2}\right)^{\frac{1}{2}}}{2} dt\) - step4: Use the substitution \(t=x^{2}\) to transform the integral\(:\) \(\int \frac{\left(5+t\right)^{\frac{1}{2}}}{2} dt\) - step5: Rewrite the expression: \(\int \frac{1}{2}\left(5+t\right)^{\frac{1}{2}} dt\) - step6: Use properties of integrals: \(\frac{1}{2}\times \int \left(5+t\right)^{\frac{1}{2}} dt\) - step7: Use the substitution \(dt=1 dv\) to transform the integral\(:\) \(\frac{1}{2}\times \int \left(5+t\right)^{\frac{1}{2}}\times 1 dv\) - step8: Simplify: \(\frac{1}{2}\times \int \left(5+t\right)^{\frac{1}{2}} dv\) - step9: Use the substitution \(v=5+t\) to transform the integral\(:\) \(\frac{1}{2}\times \int v^{\frac{1}{2}} dv\) - step10: Evaluate the integral: \(\frac{1}{2}\times \frac{v^{\frac{1}{2}+1}}{\frac{1}{2}+1}\) - step11: Simplify: \(\frac{1}{2}\times \frac{v^{\frac{3}{2}}}{\frac{3}{2}}\) - step12: Multiply the terms: \(\frac{v^{\frac{3}{2}}}{2\times \frac{3}{2}}\) - step13: Multiply the terms: \(\frac{v^{\frac{3}{2}}}{3}\) - step14: Substitute back: \(\frac{\left(5+t\right)^{\frac{3}{2}}}{3}\) - step15: Substitute back: \(\frac{\left(5+x^{2}\right)^{\frac{3}{2}}}{3}\) - step16: Simplify: \(\frac{\sqrt{\left(5+x^{2}\right)^{3}}}{3}\) - step17: Add the constant of integral C: \(\frac{\sqrt{\left(5+x^{2}\right)^{3}}}{3} + C, C \in \mathbb{R}\) Calculate the integral \( \int \frac{1}{3} x^{4} d x \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \frac{1}{3}x^{4} dx\) - step1: Use properties of integrals: \(\frac{1}{3}\times \int x^{4} dx\) - step2: Evaluate the integral: \(\frac{1}{3}\times \frac{x^{4+1}}{4+1}\) - step3: Simplify: \(\frac{1}{3}\times \frac{x^{5}}{5}\) - step4: Multiply the terms: \(\frac{x^{5}}{3\times 5}\) - step5: Multiply the terms: \(\frac{x^{5}}{15}\) - step6: Add the constant of integral C: \(\frac{x^{5}}{15} + C, C \in \mathbb{R}\) Calculate the integral \( \int x^{2} \sin(10 x) d x \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int x^{2}\sin\left(10x\right) dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=x^{2}\\&dv=\sin\left(10x\right)dx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=2xdx\\&dv=\sin\left(10x\right)dx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=2xdx\\&v=-\frac{1}{10}\cos\left(10x\right)\end{align}\) - step4: Substitute the values into formula: \(x^{2}\left(-\frac{1}{10}\cos\left(10x\right)\right)-\int 2x\left(-\frac{1}{10}\cos\left(10x\right)\right) dx\) - step5: Calculate: \(-\frac{1}{10}x^{2}\cos\left(10x\right)-\int -\frac{1}{5}x\cos\left(10x\right) dx\) - step6: Evaluate the integral: \(-\frac{1}{10}x^{2}\cos\left(10x\right)+\frac{1}{50}x\sin\left(10x\right)+\frac{1}{500}\cos\left(10x\right)\) - step7: Add the constant of integral C: \(-\frac{1}{10}x^{2}\cos\left(10x\right)+\frac{1}{50}x\sin\left(10x\right)+\frac{1}{500}\cos\left(10x\right) + C, C \in \mathbb{R}\) Here are the results for the integrals you provided: 1. **Integral of \( \frac{1}{3} x^{4} \)**: \[ \int \frac{1}{3} x^{4} d x = \frac{x^{5}}{15} + C, \quad C \in \mathbb{R} \] 2. **Integral of \( x^{2} \sin(10 x) \)**: \[ \int x^{2} \sin(10 x) d x = -\frac{1}{10}x^{2}\cos(10x) + \frac{1}{50}x\sin(10x) + \frac{1}{500}\cos(10x) + C, \quad C \in \mathbb{R} \] 3. **Integral of \( x \sqrt{5+x^{2}} \)**: \[ \int x \sqrt{5+x^{2}} d x = \frac{\sqrt{(5+x^{2})^{3}}}{3} + C, \quad C \in \mathbb{R} \] 4. **Integral of \( x^{-1} \)**: \[ \int x^{-1} d x = \ln{(|x|)} + C, \quad C \in \mathbb{R} \] These results represent the indefinite integrals of the given functions, with \( C \) being the constant of integration.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Did you know that integrals are a fundamental concept in calculus that originated with ancient mathematicians like Archimedes? He used geometric shapes to find areas under curves, which is essentially what we're doing when we calculate integrals today! This foundation laid the groundwork for the formal definition of integrals established by Newton and Leibniz in the 17th century. When tackling integrals, many people often forget to add the constant of integration, typically represented as \( C \), at the end of their calculations. Skipping this crucial step can lead to incomplete solutions! Whether you're working on basic or advanced integrals, always remember to include that constant to account for any vertical shifts in your function. Happy integrating!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy