Pregunta
upstudy study bank question image url

5 Multiple Choice 1 point \( \int(1 / 3) x^{4} d x \) \( \int x^{2} \sin (10 x) d x \) \( \int x \sqrt{ }\left(5+x^{2}\right) d x \) \( \int x^{-1} d x \)

Ask by Mccarthy Wright. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

Here are the simplified results for the integrals: 1. \( \int \frac{1}{3} x^{4} d x = \frac{x^{5}}{15} + C \) 2. \( \int x^{2} \sin(10 x) d x = -\frac{1}{10}x^{2}\cos(10x) + \frac{1}{50}x\sin(10x) + \frac{1}{500}\cos(10x) + C \) 3. \( \int x \sqrt{5+x^{2}} d x = \frac{\sqrt{(5+x^{2})^{3}}}{3} + C \) 4. \( \int x^{-1} d x = \ln{(|x|)} + C \) These are the simplified forms of the integrals provided.

Solución

Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int x^{-1} dx\) - step1: Rewrite the expression: \(\int \frac{1}{x} dx\) - step2: Evaluate the integral: \(\ln{\left(\left|x\right|\right)}\) - step3: Add the constant of integral C: \(\ln{\left(\left|x\right|\right)} + C, C \in \mathbb{R}\) Calculate the integral \( \int x \sqrt{5+x^{2}} d x \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int x\sqrt{5+x^{2}} dx\) - step1: Rewrite the expression: \(\int x\left(5+x^{2}\right)^{\frac{1}{2}} dx\) - step2: Use the substitution \(dx=\frac{1}{2x} dt\) to transform the integral\(:\) \(\int x\left(5+x^{2}\right)^{\frac{1}{2}}\times \frac{1}{2x} dt\) - step3: Simplify: \(\int \frac{\left(5+x^{2}\right)^{\frac{1}{2}}}{2} dt\) - step4: Use the substitution \(t=x^{2}\) to transform the integral\(:\) \(\int \frac{\left(5+t\right)^{\frac{1}{2}}}{2} dt\) - step5: Rewrite the expression: \(\int \frac{1}{2}\left(5+t\right)^{\frac{1}{2}} dt\) - step6: Use properties of integrals: \(\frac{1}{2}\times \int \left(5+t\right)^{\frac{1}{2}} dt\) - step7: Use the substitution \(dt=1 dv\) to transform the integral\(:\) \(\frac{1}{2}\times \int \left(5+t\right)^{\frac{1}{2}}\times 1 dv\) - step8: Simplify: \(\frac{1}{2}\times \int \left(5+t\right)^{\frac{1}{2}} dv\) - step9: Use the substitution \(v=5+t\) to transform the integral\(:\) \(\frac{1}{2}\times \int v^{\frac{1}{2}} dv\) - step10: Evaluate the integral: \(\frac{1}{2}\times \frac{v^{\frac{1}{2}+1}}{\frac{1}{2}+1}\) - step11: Simplify: \(\frac{1}{2}\times \frac{v^{\frac{3}{2}}}{\frac{3}{2}}\) - step12: Multiply the terms: \(\frac{v^{\frac{3}{2}}}{2\times \frac{3}{2}}\) - step13: Multiply the terms: \(\frac{v^{\frac{3}{2}}}{3}\) - step14: Substitute back: \(\frac{\left(5+t\right)^{\frac{3}{2}}}{3}\) - step15: Substitute back: \(\frac{\left(5+x^{2}\right)^{\frac{3}{2}}}{3}\) - step16: Simplify: \(\frac{\sqrt{\left(5+x^{2}\right)^{3}}}{3}\) - step17: Add the constant of integral C: \(\frac{\sqrt{\left(5+x^{2}\right)^{3}}}{3} + C, C \in \mathbb{R}\) Calculate the integral \( \int \frac{1}{3} x^{4} d x \). Evaluate the integral by following steps: - step0: Evaluate using formulas and rules: \(\int \frac{1}{3}x^{4} dx\) - step1: Use properties of integrals: \(\frac{1}{3}\times \int x^{4} dx\) - step2: Evaluate the integral: \(\frac{1}{3}\times \frac{x^{4+1}}{4+1}\) - step3: Simplify: \(\frac{1}{3}\times \frac{x^{5}}{5}\) - step4: Multiply the terms: \(\frac{x^{5}}{3\times 5}\) - step5: Multiply the terms: \(\frac{x^{5}}{15}\) - step6: Add the constant of integral C: \(\frac{x^{5}}{15} + C, C \in \mathbb{R}\) Calculate the integral \( \int x^{2} \sin(10 x) d x \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int x^{2}\sin\left(10x\right) dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=x^{2}\\&dv=\sin\left(10x\right)dx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=2xdx\\&dv=\sin\left(10x\right)dx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=2xdx\\&v=-\frac{1}{10}\cos\left(10x\right)\end{align}\) - step4: Substitute the values into formula: \(x^{2}\left(-\frac{1}{10}\cos\left(10x\right)\right)-\int 2x\left(-\frac{1}{10}\cos\left(10x\right)\right) dx\) - step5: Calculate: \(-\frac{1}{10}x^{2}\cos\left(10x\right)-\int -\frac{1}{5}x\cos\left(10x\right) dx\) - step6: Evaluate the integral: \(-\frac{1}{10}x^{2}\cos\left(10x\right)+\frac{1}{50}x\sin\left(10x\right)+\frac{1}{500}\cos\left(10x\right)\) - step7: Add the constant of integral C: \(-\frac{1}{10}x^{2}\cos\left(10x\right)+\frac{1}{50}x\sin\left(10x\right)+\frac{1}{500}\cos\left(10x\right) + C, C \in \mathbb{R}\) Here are the results for the integrals you provided: 1. **Integral of \( \frac{1}{3} x^{4} \)**: \[ \int \frac{1}{3} x^{4} d x = \frac{x^{5}}{15} + C, \quad C \in \mathbb{R} \] 2. **Integral of \( x^{2} \sin(10 x) \)**: \[ \int x^{2} \sin(10 x) d x = -\frac{1}{10}x^{2}\cos(10x) + \frac{1}{50}x\sin(10x) + \frac{1}{500}\cos(10x) + C, \quad C \in \mathbb{R} \] 3. **Integral of \( x \sqrt{5+x^{2}} \)**: \[ \int x \sqrt{5+x^{2}} d x = \frac{\sqrt{(5+x^{2})^{3}}}{3} + C, \quad C \in \mathbb{R} \] 4. **Integral of \( x^{-1} \)**: \[ \int x^{-1} d x = \ln{(|x|)} + C, \quad C \in \mathbb{R} \] These results represent the indefinite integrals of the given functions, with \( C \) being the constant of integration.

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Did you know that integrals are a fundamental concept in calculus that originated with ancient mathematicians like Archimedes? He used geometric shapes to find areas under curves, which is essentially what we're doing when we calculate integrals today! This foundation laid the groundwork for the formal definition of integrals established by Newton and Leibniz in the 17th century. When tackling integrals, many people often forget to add the constant of integration, typically represented as \( C \), at the end of their calculations. Skipping this crucial step can lead to incomplete solutions! Whether you're working on basic or advanced integrals, always remember to include that constant to account for any vertical shifts in your function. Happy integrating!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad