Question
upstudy study bank question image url

2. Determine the domain of the following functions: \( \begin{array}{lll}\text { i) } h(x)=x+\sqrt{3 x-4} & \text { ii) } k(x)=\sqrt{x}+\sqrt{x-1} \\ \text { iii) } f(x)=\sqrt[5]{x+3} & \text { iv) } k(x)=\sqrt[4]{2 x+1} \\ \text { v) } f(x)=x^{2}+\sqrt{x^{2}+4 x-12} & \text { (vi) } f(x)=\sqrt{\frac{x+1}{x-1}}\end{array} \)

Ask by Harrington Sanders. in Zambia
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

**Domains of the Functions:** 1. \( h(x) = x + \sqrt{3x - 4} \): \( x \geq \frac{4}{3} \) 2. \( k(x) = \sqrt{x} + \sqrt{x - 1} \): \( x \geq 1 \) 3. \( f(x) = \sqrt[5]{x + 3} \): All real numbers 4. \( k(x) = \sqrt[4]{2x + 1} \): \( x \geq -\frac{1}{2} \) 5. \( f(x) = x^2 + \sqrt{x^2 + 4x - 12} \): \( x \leq -6 \) or \( x \geq 2 \) 6. \( f(x) = \sqrt{\frac{x + 1}{x - 1}} \): \( -1 \leq x < 1 \) or \( x > 1 \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Answered by UpStudy AI and reviewed by a Professional Tutor

Extra Insights

To determine the domain of the given functions, we need to analyze the expressions under the square roots and ensure that they remain non-negative (for square roots) or define valid inputs (for other functions). Let's break it down for each function: 1. **For** \( h(x)=x+\sqrt{3x-4} \): The expression \( 3x - 4 \geq 0 \) leads to \( x \geq \frac{4}{3} \). Therefore, the domain is \( [\frac{4}{3}, \infty) \). 2. **For** \( k(x)=\sqrt{x}+\sqrt{x-1} \): The requirements \( x \geq 0 \) (from \( \sqrt{x} \)) and \( x - 1 \geq 0 \) (from \( \sqrt{x-1} \)) imply \( x \geq 1 \). Thus, the domain is \( [1, \infty) \). 3. **For** \( f(x)=\sqrt[5]{x+3} \): The function \( \sqrt[5]{x+3} \) is defined for all real numbers since there's no restriction on odd roots. Hence, the domain is \( (-\infty, \infty) \). 4. **For** \( k(x)=\sqrt[4]{2x+1} \): Since \( \sqrt[4]{2x+1} \) is defined as long as \( 2x + 1 \geq 0 \), we find \( x \geq -\frac{1}{2} \). Thus, the domain is \( [-\frac{1}{2}, \infty) \). 5. **For** \( f(x)=x^2+\sqrt{x^2+4x-12} \): We need the expression inside the square root, \( x^2 + 4x - 12 \geq 0 \). Factoring gives \( (x+6)(x-2) \geq 0 \), leading to the intervals \( (-\infty, -6] \cup [2, \infty) \). Hence, the domain is \( (-\infty, -6] \cup [2, \infty) \). 6. **For** \( f(x)=\sqrt{\frac{x+1}{x-1}} \): To be defined, the fraction must be non-negative and the denominator cannot be zero. Thus, \( x + 1 \geq 0 \) gives \( x \geq -1 \) and \( x - 1 > 0 \) gives \( x > 1 \). The overlapping requirement yields the domain \( (1, \infty) \). So, summarizing, we have: 1. \( [\frac{4}{3}, \infty) \) 2. \( [1, \infty) \) 3. \( (-\infty, \infty) \) 4. \( [-\frac{1}{2}, \infty) \) 5. \( (-\infty, -6] \cup [2, \infty) \) 6. \( (1, \infty) \)

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy