2. Determine the domain of the following functions: \( \begin{array}{lll}\text { i) } h(x)=x+\sqrt{3 x-4} & \text { ii) } k(x)=\sqrt{x}+\sqrt{x-1} \\ \text { iii) } f(x)=\sqrt[5]{x+3} & \text { iv) } k(x)=\sqrt[4]{2 x+1} \\ \text { v) } f(x)=x^{2}+\sqrt{x^{2}+4 x-12} & \text { (vi) } f(x)=\sqrt{\frac{x+1}{x-1}}\end{array} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución

¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.

Respondido por UpStudy AI y revisado por un tutor profesional
Extra Insights
To determine the domain of the given functions, we need to analyze the expressions under the square roots and ensure that they remain non-negative (for square roots) or define valid inputs (for other functions). Let's break it down for each function: 1. **For** \( h(x)=x+\sqrt{3x-4} \): The expression \( 3x - 4 \geq 0 \) leads to \( x \geq \frac{4}{3} \). Therefore, the domain is \( [\frac{4}{3}, \infty) \). 2. **For** \( k(x)=\sqrt{x}+\sqrt{x-1} \): The requirements \( x \geq 0 \) (from \( \sqrt{x} \)) and \( x - 1 \geq 0 \) (from \( \sqrt{x-1} \)) imply \( x \geq 1 \). Thus, the domain is \( [1, \infty) \). 3. **For** \( f(x)=\sqrt[5]{x+3} \): The function \( \sqrt[5]{x+3} \) is defined for all real numbers since there's no restriction on odd roots. Hence, the domain is \( (-\infty, \infty) \). 4. **For** \( k(x)=\sqrt[4]{2x+1} \): Since \( \sqrt[4]{2x+1} \) is defined as long as \( 2x + 1 \geq 0 \), we find \( x \geq -\frac{1}{2} \). Thus, the domain is \( [-\frac{1}{2}, \infty) \). 5. **For** \( f(x)=x^2+\sqrt{x^2+4x-12} \): We need the expression inside the square root, \( x^2 + 4x - 12 \geq 0 \). Factoring gives \( (x+6)(x-2) \geq 0 \), leading to the intervals \( (-\infty, -6] \cup [2, \infty) \). Hence, the domain is \( (-\infty, -6] \cup [2, \infty) \). 6. **For** \( f(x)=\sqrt{\frac{x+1}{x-1}} \): To be defined, the fraction must be non-negative and the denominator cannot be zero. Thus, \( x + 1 \geq 0 \) gives \( x \geq -1 \) and \( x - 1 > 0 \) gives \( x > 1 \). The overlapping requirement yields the domain \( (1, \infty) \). So, summarizing, we have: 1. \( [\frac{4}{3}, \infty) \) 2. \( [1, \infty) \) 3. \( (-\infty, \infty) \) 4. \( [-\frac{1}{2}, \infty) \) 5. \( (-\infty, -6] \cup [2, \infty) \) 6. \( (1, \infty) \)
