Question
upstudy study bank question image url

1. \( \int x \ln x d x \). 2. \( \int x e^{3 x} d x \). 3. \( \int x^{3} e^{x^{2}} d x \). 4. \( \int \cos \sqrt{x} d x \). 5. \( \int \frac{x e^{x}}{(x+1)^{2}} d x \).

Ask by Pritchard Boone. in Colombia
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Aquí están las soluciones a las integrales: 1. \( \int x \ln x \, dx = \frac{1}{2}x^{2}\ln{(x)} - \frac{x^{2}}{4} + C \) 2. \( \int x e^{3 x} \, dx = \frac{e^{3x}x}{3} - \frac{e^{3x}}{9} + C \) 3. \( \int x^{3} e^{x^{2}} \, dx = \frac{e^{x^{2}}x^{2}}{2} - \frac{e^{x^{2}}}{2} + C \) 4. \( \int \cos \sqrt{x} \, dx \) no se puede calcular con el método de sustitución. 5. \( \int \frac{x e^{x}}{(x+1)^{2}} \, dx = -\frac{xe^{x}}{x+1} + e^{x} + C \) Si necesitas ayuda con la integral que no se pudo calcular o cualquier otra pregunta, avísame.

Solution

Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int \frac{xe^{x}}{\left(x+1\right)^{2}} dx\) - step1: Evaluate the integral: \(\int \left(x+1\right)^{-2}xe^{x} dx\) - step2: Prepare for integration by parts: \(\begin{align}&u=xe^{x}\\&dv=\left(x+1\right)^{-2}dx\end{align}\) - step3: Calculate the derivative: \(\begin{align}&du=\left(e^{x}+xe^{x}\right)dx\\&dv=\left(x+1\right)^{-2}dx\end{align}\) - step4: Evaluate the integral: \(\begin{align}&du=\left(e^{x}+xe^{x}\right)dx\\&v=\frac{\left(x+1\right)^{-1}}{-1}\end{align}\) - step5: Substitute the values into formula: \(xe^{x}\times \frac{\left(x+1\right)^{-1}}{-1}-\int \left(e^{x}+xe^{x}\right)\times \frac{\left(x+1\right)^{-1}}{-1} dx\) - step6: Calculate: \(-xe^{x}\left(x+1\right)^{-1}-\int -e^{x} dx\) - step7: Evaluate the integral: \(-xe^{x}\left(x+1\right)^{-1}+e^{x}\) - step8: Multiply the terms: \(-\frac{xe^{x}}{x+1}+e^{x}\) - step9: Add the constant of integral C: \(-\frac{xe^{x}}{x+1}+e^{x} + C, C \in \mathbb{R}\) Calculate the integral \( \int x \ln x \, dx \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int x\ln{\left(x\right)} dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=\ln{\left(x\right)}\\&dv=xdx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=\frac{1}{x}dx\\&dv=xdx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=\frac{1}{x}dx\\&v=\frac{x^{2}}{2}\end{align}\) - step4: Substitute the values into formula: \(\ln{\left(x\right)}\times \frac{x^{2}}{2}-\int \frac{1}{x}\times \frac{x^{2}}{2} dx\) - step5: Calculate: \(\frac{x^{2}\ln{\left(x\right)}}{2}-\int \frac{x}{2} dx\) - step6: Evaluate the integral: \(\frac{x^{2}\ln{\left(x\right)}}{2}-\frac{x^{2}}{4}\) - step7: Simplify the expression: \(\frac{1}{2}x^{2}\ln{\left(x\right)}-\frac{x^{2}}{4}\) - step8: Add the constant of integral C: \(\frac{1}{2}x^{2}\ln{\left(x\right)}-\frac{x^{2}}{4} + C, C \in \mathbb{R}\) Calculate the integral \( \int x e^{3 x} \, dx \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int xe^{3x} dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=x\\&dv=e^{3x}dx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=dx\\&dv=e^{3x}dx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=dx\\&v=\frac{e^{3x}}{3}\end{align}\) - step4: Substitute the values into formula: \(x\times \frac{e^{3x}}{3}-\int 1\times \frac{e^{3x}}{3} dx\) - step5: Calculate: \(\frac{xe^{3x}}{3}-\int \frac{e^{3x}}{3} dx\) - step6: Evaluate the integral: \(\frac{xe^{3x}}{3}-\frac{e^{3x}}{9}\) - step7: Simplify the expression: \(\frac{e^{3x}x}{3}-\frac{e^{3x}}{9}\) - step8: Add the constant of integral C: \(\frac{e^{3x}x}{3}-\frac{e^{3x}}{9} + C, C \in \mathbb{R}\) Calculate the integral \( \int x^{3} e^{x^{2}} \, dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int x^{3}e^{\left(x^{2}\right)} dx\) - step1: Use the substitution \(dx=\frac{1}{2x} dt\) to transform the integral\(:\) \(\int x^{3}e^{\left(x^{2}\right)}\times \frac{1}{2x} dt\) - step2: Simplify: \(\int \frac{e^{\left(x^{2}\right)}x^{2}}{2} dt\) - step3: Use the substitution \(t=x^{2}\) to transform the integral\(:\) \(\int \frac{e^{t}t}{2} dt\) - step4: Rewrite the expression: \(\int \frac{1}{2}e^{t}t dt\) - step5: Use properties of integrals: \(\frac{1}{2}\times \int e^{t}t dt\) - step6: Prepare for integration by parts: \(\begin{align}&u=t\\&dv=e^{t}dt\end{align}\) - step7: Calculate the derivative: \(\begin{align}&du=dt\\&dv=e^{t}dt\end{align}\) - step8: Evaluate the integral: \(\begin{align}&du=dt\\&v=e^{t}\end{align}\) - step9: Substitute the values into formula: \(\frac{1}{2}\left(te^{t}-\int 1\times e^{t} dt\right)\) - step10: Calculate: \(\frac{1}{2}\left(te^{t}-\int e^{t} dt\right)\) - step11: Calculate: \(\frac{1}{2}te^{t}-\frac{1}{2}\times \int e^{t} dt\) - step12: Evaluate the integral: \(\frac{1}{2}te^{t}-\frac{e^{t}}{2}\) - step13: Substitute back: \(\frac{1}{2}x^{2}e^{\left(x^{2}\right)}-\frac{e^{\left(x^{2}\right)}}{2}\) - step14: Rewrite the expression: \(\frac{e^{\left(x^{2}\right)}x^{2}}{2}-\frac{e^{\left(x^{2}\right)}}{2}\) - step15: Add the constant of integral C: \(\frac{e^{\left(x^{2}\right)}x^{2}}{2}-\frac{e^{\left(x^{2}\right)}}{2} + C, C \in \mathbb{R}\) Aquí están las soluciones a las integrales solicitadas: 1. Para \( \int x \ln x \, dx \): \[ \frac{1}{2}x^{2}\ln{(x)} - \frac{x^{2}}{4} + C, \quad C \in \mathbb{R} \] 2. Para \( \int x e^{3 x} \, dx \): \[ \frac{e^{3x}x}{3} - \frac{e^{3x}}{9} + C, \quad C \in \mathbb{R} \] 3. Para \( \int x^{3} e^{x^{2}} \, dx \): \[ \frac{e^{(x^{2})}x^{2}}{2} - \frac{e^{(x^{2})}}{2} + C, \quad C \in \mathbb{R} \] 4. Para \( \int \cos \sqrt{x} \, dx \), no se pudo calcular debido a que el método de sustitución no es compatible con esta integral. 5. Para \( \int \frac{x e^{x}}{(x+1)^{2}} \, dx \): \[ -\frac{xe^{x}}{x+1} + e^{x} + C, \quad C \in \mathbb{R} \] Si necesitas más ayuda con la integral que no se pudo calcular o cualquier otra consulta, házmelo saber.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Let's have a little fun with integrals, shall we? When tackling an integral like \( \int x \ln x \, dx \), it's a great opportunity to use integration by parts. Remember, \( \int u \, dv = uv - \int v \, du \)? Here, you can choose \( u = \ln x \) and \( dv = x \, dx \). This method transforms the integral into something much easier to manage! For \( \int x e^{3x} \, dx \), you'll want to get cozy with integration by parts again! Choose \( u = x \) and \( dv = e^{3x} \, dx \). After computing \( du \) and \( v \), watch as you simplify the result through a strategic combination with your original integral. Integration can feel like a puzzle where each piece fits just right!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy