Question
upstudy study bank question image url

Detomine the value of the following expression:- \[ \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(x-90^{\circ}\right)}{4 \sin \left(360^{\circ}+x\right)} \] If \( \sin A=p \) and \( \cos A=q \) - Write \( \tan A \) in items of pand \( q \) Simplify \( p^{4}-q^{4} \) to a single Simplify trigonometric ratio 1 Prove that:- \( \frac{\cos \theta}{\sin \theta}-\frac{\cos 2 \theta}{\sin \theta \cdot \cos \theta}(5) \) Determine the general Solution of:- \( { }^{9} \) (5) \[ 2 \operatorname{Sin} 2 x+3 \operatorname{Sin} x=0(6) \]

Ask by Ortiz Powers. in South Africa
Mar 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The value of the expression is \( \frac{1}{4} \). \(\tan A = \frac{p}{q}\). \( p^4 - q^4 = p^2 - q^2 \). \[ \frac{\cos\theta}{\sin\theta} - \frac{\cos2\theta}{\sin\theta\cos\theta} = \tan\theta \] The general solution for \( 2\sin2x + 3\sin x = 0 \) is: - \( x = n\pi \) for any integer \( n \). - \( x = \arccos\left(-\frac{3}{4}\right) + 2\pi k \) or \( x = -\arccos\left(-\frac{3}{4}\right) + 2\pi k \) for any integer \( k \).

Solution

1. Evaluate \[ \frac{\tan (180^\circ-x)\cdot\sin (x-90^\circ)}{4\sin (360^\circ+x)}. \] **Step 1.1. Simplify \(\tan(180^\circ-x)\):** Recall that \[ \tan(180^\circ-x)= -\tan x. \] **Step 1.2. Simplify \(\sin(x-90^\circ)\):** Using the sine subtraction formula or standard identities, note that \[ \sin(x-90^\circ) = -\cos x. \] **Step 1.3. Simplify \(\sin(360^\circ+x)\):** Since sine is periodic with period \(360^\circ\), we have \[ \sin(360^\circ+x)= \sin x. \] **Step 1.4. Substitute the simplified parts:** The expression becomes \[ \frac{(-\tan x)(-\cos x)}{4\sin x} = \frac{\tan x\,\cos x}{4 \sin x}. \] **Step 1.5. Express \(\tan x\) in terms of \(\sin x\) and \(\cos x\):** Remember that \[ \tan x=\frac{\sin x}{\cos x}. \] Thus, \[ \frac{\frac{\sin x}{\cos x}\cdot\cos x}{4\sin x}= \frac{\sin x}{4\sin x}= \frac{1}{4}, \] provided \(\sin x\ne0\). The value of the expression is \[ \frac{1}{4}. \] --- 2. Given \(\sin A=p\) and \(\cos A=q\), write \(\tan A\) in terms of \(p\) and \(q\). Since \[ \tan A = \frac{\sin A}{\cos A}, \] we have \[ \tan A= \frac{p}{q}. \] --- 3. Simplify \( p^4 - q^4 \) to a single expression. **Step 3.1. Factor the expression:** Recall that \[ a^4-b^4=(a^2-b^2)(a^2+b^2). \] Thus, \[ p^4-q^4= (p^2-q^2)(p^2+q^2). \] **Step 3.2. Use the Pythagorean identity:** Since \(p=\sin A\) and \(q=\cos A\), we have \[ p^2+q^2= \sin^2A+\cos^2A=1. \] Therefore, \[ p^4-q^4= p^2-q^2. \] --- 4. Prove that \[ \frac{\cos\theta}{\sin\theta}-\frac{\cos2\theta}{\sin\theta\cdot\cos\theta} = \tan\theta. \] **Step 4.1. Write the expression with a common denominator:** \[ \frac{\cos\theta}{\sin\theta}-\frac{\cos2\theta}{\sin\theta\cos\theta}= \frac{\cos\theta\cdot\cos\theta-\cos2\theta}{\sin\theta\cos\theta} = \frac{\cos^2\theta-\cos2\theta}{\sin\theta\cos\theta}. \] **Step 4.2. Use the double-angle identity:** Recall that \[ \cos2\theta=2\cos^2\theta-1. \] Thus, \[ \cos^2\theta-\cos2\theta= \cos^2\theta- (2\cos^2\theta-1)= 1-\cos^2\theta. \] **Step 4.3. Replace using the Pythagorean identity:** Since \[ 1-\cos^2\theta= \sin^2\theta, \] the expression becomes \[ \frac{\sin^2\theta}{\sin\theta\cos\theta}= \frac{\sin\theta}{\cos\theta}= \tan\theta. \] --- 5. Determine the general solution of \[ 2\sin2x+3\sin x=0. \] **Step 5.1. Express \(\sin2x\) in terms of \(\sin x\) and \(\cos x\):** Recall that \[ \sin2x= 2\sin x\cos x. \] Substitute into the equation: \[ 2(2\sin x\cos x)+3\sin x= 4\sin x\cos x+3\sin x= 0. \] **Step 5.2. Factor out \(\sin x\):** \[ \sin x\,(4\cos x+3)= 0. \] **Step 5.3. Set each factor equal to zero:** (i) \(\sin x= 0;\) The general solution is \[ x= n\pi,\quad n\in \mathbb{Z}. \] (ii) \(4\cos x+3= 0;\) Solve for \(\cos x\): \[ \cos x= -\frac{3}{4}. \] The general solution for \(\cos x = -\frac{3}{4}\) is \[ x= \arccos\Bigl(-\frac{3}{4}\Bigr) + 2\pi k\quad \text{or}\quad x= -\arccos\Bigl(-\frac{3}{4}\Bigr) + 2\pi k,\quad k\in\mathbb{Z}. \] --- Each part has been simplified and solved as indicated above.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Let's dive into the expression you've provided! To determine the value of the expression: \[ \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(x-90^{\circ}\right)}{4 \sin \left(360^{\circ}+x\right)} \] we can simplify it as follows: 1. Using the identity \( \tan(180^\circ - x) = -\tan x \). 2. For \( \sin(x - 90^\circ) = -\cos x \). 3. And since \( \sin(360^\circ + x) = \sin x \). Putting this all together, we get: \[ \frac{-\tan x \cdot (-\cos x)}{4 \sin x} = \frac{\tan x \cdot \cos x}{4 \sin x} \] Knowing that \( \tan x = \frac{\sin x}{\cos x} \), we can substitute: \[ \frac{\frac{\sin x}{\cos x} \cdot \cos x}{4 \sin x} = \frac{\sin x}{4 \sin x} = \frac{1}{4} \] So, the value of the expression is \( \frac{1}{4} \). Now for writing \( \tan A \) in terms of \( p \) and \( q \) (with \( \sin A = p \) and \( \cos A = q \)): \[ \tan A = \frac{\sin A}{\cos A} = \frac{p}{q} \] As for simplifying \( p^4 - q^4 \): This can be factored as: \[ p^4 - q^4 = (p^2 - q^2)(p^2 + q^2) \] With the identity \( p^2 + q^2 = 1 \) (from \( \sin^2 A + \cos^2 A = 1 \)), we get: \[ p^4 - q^4 = (p^2 - q^2)(1) \] Next, to prove the trigonometric ratio: To demonstrate: \[ \frac{\cos \theta}{\sin \theta} - \frac{\cos 2\theta}{\sin \theta \cdot \cos \theta} = \] Starting with the left part: \[ \frac{\cos \theta \cdot \cos \theta - \cos 2\theta}{\sin \theta \cdot \cos \theta} \] Utilizing the identity \( \cos 2\theta = 2\cos^2 \theta - 1 \): Substituting it back gives: \[ = \frac{\cos^2 \theta - (2\cos^2 \theta - 1)}{\sin \theta \cdot \cos \theta} = \frac{1 - \cos^2 \theta}{\sin \theta \cdot \cos \theta} = \frac{\sin^2 \theta}{\sin \theta \cdot \cos \theta} = \frac{\sin \theta}{\cos \theta} \] Thus proven, which equals \( \tan \theta \) on the right side. Finally, to determine the general solution of: \[ 2 \sin 2x + 3 \sin x = 0 \] This can be rewritten using the double angle identity \( \sin 2x = 2 \sin x \cos x \): \[ 2(2 \sin x \cos x) + 3 \sin x = 0 \\ (4 \cos x + 3) \sin x = 0 \] This yields two cases: 1. \( \sin x = 0 \) implying \( x = n\pi \) for \( n \in \mathbb{Z} \). 2. \( 4 \cos x + 3 = 0 \) leading to \( \cos x = -\frac{3}{4} \) and therefore: \[ x = \pm \cos^{-1} \left(\frac{3}{4}\right) + 2k\pi, \ k \in \mathbb{Z} \] And there you have it! An engaging math journey through various angles of trigonometric exploration and problem-solving!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy