Detomine the value of the following expression:- \[ \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(x-90^{\circ}\right)}{4 \sin \left(360^{\circ}+x\right)} \] If \( \sin A=p \) and \( \cos A=q \) - Write \( \tan A \) in items of pand \( q \) Simplify \( p^{4}-q^{4} \) to a single Simplify trigonometric ratio 1 Prove that:- \( \frac{\cos \theta}{\sin \theta}-\frac{\cos 2 \theta}{\sin \theta \cdot \cos \theta}(5) \) Determine the general Solution of:- \( { }^{9} \) (5) \[ 2 \operatorname{Sin} 2 x+3 \operatorname{Sin} x=0(6) \]
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
Let's dive into the expression you've provided! To determine the value of the expression: \[ \frac{\tan \left(180^{\circ}-x\right) \cdot \sin \left(x-90^{\circ}\right)}{4 \sin \left(360^{\circ}+x\right)} \] we can simplify it as follows: 1. Using the identity \( \tan(180^\circ - x) = -\tan x \). 2. For \( \sin(x - 90^\circ) = -\cos x \). 3. And since \( \sin(360^\circ + x) = \sin x \). Putting this all together, we get: \[ \frac{-\tan x \cdot (-\cos x)}{4 \sin x} = \frac{\tan x \cdot \cos x}{4 \sin x} \] Knowing that \( \tan x = \frac{\sin x}{\cos x} \), we can substitute: \[ \frac{\frac{\sin x}{\cos x} \cdot \cos x}{4 \sin x} = \frac{\sin x}{4 \sin x} = \frac{1}{4} \] So, the value of the expression is \( \frac{1}{4} \). Now for writing \( \tan A \) in terms of \( p \) and \( q \) (with \( \sin A = p \) and \( \cos A = q \)): \[ \tan A = \frac{\sin A}{\cos A} = \frac{p}{q} \] As for simplifying \( p^4 - q^4 \): This can be factored as: \[ p^4 - q^4 = (p^2 - q^2)(p^2 + q^2) \] With the identity \( p^2 + q^2 = 1 \) (from \( \sin^2 A + \cos^2 A = 1 \)), we get: \[ p^4 - q^4 = (p^2 - q^2)(1) \] Next, to prove the trigonometric ratio: To demonstrate: \[ \frac{\cos \theta}{\sin \theta} - \frac{\cos 2\theta}{\sin \theta \cdot \cos \theta} = \] Starting with the left part: \[ \frac{\cos \theta \cdot \cos \theta - \cos 2\theta}{\sin \theta \cdot \cos \theta} \] Utilizing the identity \( \cos 2\theta = 2\cos^2 \theta - 1 \): Substituting it back gives: \[ = \frac{\cos^2 \theta - (2\cos^2 \theta - 1)}{\sin \theta \cdot \cos \theta} = \frac{1 - \cos^2 \theta}{\sin \theta \cdot \cos \theta} = \frac{\sin^2 \theta}{\sin \theta \cdot \cos \theta} = \frac{\sin \theta}{\cos \theta} \] Thus proven, which equals \( \tan \theta \) on the right side. Finally, to determine the general solution of: \[ 2 \sin 2x + 3 \sin x = 0 \] This can be rewritten using the double angle identity \( \sin 2x = 2 \sin x \cos x \): \[ 2(2 \sin x \cos x) + 3 \sin x = 0 \\ (4 \cos x + 3) \sin x = 0 \] This yields two cases: 1. \( \sin x = 0 \) implying \( x = n\pi \) for \( n \in \mathbb{Z} \). 2. \( 4 \cos x + 3 = 0 \) leading to \( \cos x = -\frac{3}{4} \) and therefore: \[ x = \pm \cos^{-1} \left(\frac{3}{4}\right) + 2k\pi, \ k \in \mathbb{Z} \] And there you have it! An engaging math journey through various angles of trigonometric exploration and problem-solving!