Question
upstudy study bank question image url

3. Which one is the slope of the line passing through the points \( A(3,-2) \) and \( B(2,2) \) ? A) -4 B) -2 C) 1 D) 2 E) 3 8. Let \( A(2,1), B(-2,3) \) and \( C(4,1) \) be three points. Which one(s) of the following(s) is/are false? 1. \( A B \) is parallel to the \( x \)-axis. II. \( A C \) is parallel to the \( x \)-axis. III. The slope of line \( A C \) is 0 . IV. The slope of line BC is \( -\frac{1}{3} \) A) I only B) II only D) \( I \) and III E) III and IV

Ask by Wheeler Franklin. in Turkey
Jan 29,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

**3. Doğrunun eğimi -4'dür.** **8. Sadece I. ifade yanlıştır.**

Solution

**3. Noktaları \( A(3,-2) \) ve \( B(2,2) \) olan doğrunun eğimi nedir?** Eğim formülü: \[ m = \frac{y_2 - y_1}{x_2 - x_1} \] Bu durumda: \[ m = \frac{2 - (-2)}{2 - 3} = \frac{4}{-1} = -4 \] **Doğru Cevap: A) -4** --- **8. Noktaları \( A(2,1) \), \( B(-2,3) \) ve \( C(4,1) \) olan üç noktaya ait ifadelerden hangileri yanlıştır?** **İfadeleri inceleyelim:** **I. \( AB \) doğrusunun \( x \)-eksenine paralel olması:** \- \( AB \) doğrusunun eğimi: \[ m_{AB} = \frac{3 - 1}{-2 - 2} = \frac{2}{-4} = -\frac{1}{2} \] \- \( x \)-eksenine paralel olması için eğiminin 0 olması gerekir. Burada \( m_{AB} = -\frac{1}{2} \) olduğu için **Yanlıştır**. **II. \( AC \) doğrusunun \( x \)-eksenine paralel olması:** \- \( AC \) doğrusunun eğimi: \[ m_{AC} = \frac{1 - 1}{4 - 2} = \frac{0}{2} = 0 \] \- Eğim 0 olduğu için doğrudur. **Doğru.** **III. \( AC \) doğrusunun eğiminin 0 olması:** \- Yukarıda hesaplanmıştır, \( m_{AC} = 0 \). **Doğru.** **IV. \( BC \) doğrusunun eğiminin \( -\frac{1}{3} \) olması:** \- \( BC \) doğrusunun eğimi: \[ m_{BC} = \frac{1 - 3}{4 - (-2)} = \frac{-2}{6} = -\frac{1}{3} \] \- Eğim \( -\frac{1}{3} \) olduğu için doğrudur. **Doğru.** **Sonuç: Sadece I. ifade yanlıştır.** **Doğru Cevap: A) I only**

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the slope of the line passing through the points \( A(3,-2) \) and \( B(2,2) \), we use the formula for slope: \( m = \frac{y_2 - y_1}{x_2 - x_1} \). Plugging in the coordinates: \( m = \frac{2 - (-2)}{2 - 3} = \frac{4}{-1} = -4 \). So, the answer is A) -4! For the second question, let's analyze the statements about the points \( A(2,1) \), \( B(-2,3) \), and \( C(4,1) \). The line \( A B \) is not parallel to the \( x \)-axis because it has differing \( y \)-coordinates (1 and 3), making statement I false. Meanwhile, both points \( A(2,1) \) and \( C(4,1) \) have the same \( y \)-coordinate; thus \( A C \) is indeed parallel to the \( x \)-axis, making II true. A slope of 0 also confirms III as true. Lastly, calculating the slope for line \( BC \) gives us \( m = \frac{1 - 3}{4 - (-2)} = \frac{-2}{6} = -\frac{1}{3} \), affirming IV as true. Therefore, the false statement is I only (A).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy