Answer
**S2 Simplification:**
\[
\frac{\sin(90^\circ-\theta) \cdot \cos480^\circ + \cos(180^\circ-\theta)}{\cos\theta \cdot \sin150^\circ - \tan180^\circ} = -3
\]
**Proof of Problem 53:**
\[
\frac{\cos x}{\sin2x} - \frac{\cos2x}{2\sin x} = \sin x
\]
**General Solution for Problem 5.4:**
\[
x = 10^\circ + 120^\circ k \quad \text{or} \quad x = 150^\circ + 360^\circ k, \quad k \in \mathbb{Z}
\]
**Problem 55 Simplification:**
\[
\frac{2ab}{c^2} = \frac{\sqrt{2}}{2}
\]
Solution
**Problem S2**
We want to simplify
\[
\frac{\sin \left(90^\circ-\theta\right) \cdot \cos 480^\circ+\cos \left(180^\circ-\theta\right)}{\cos \theta \cdot \sin 150^\circ-\tan 180^\circ}.
\]
1. Use the identity \(\sin(90^\circ-\theta)=\cos \theta\).
2. Note that \(\cos 480^\circ=\cos(480^\circ-360^\circ)=\cos 120^\circ=-\frac{1}{2}\).
3. Use \(\cos(180^\circ-\theta)=-\cos \theta\).
Thus, the numerator becomes
\[
\begin{aligned}
\sin(90^\circ-\theta)\cdot \cos 480^\circ + \cos(180^\circ-\theta)
&=\cos\theta \cdot \left(-\frac{1}{2}\right) - \cos\theta\\[1mm]
&=-\frac{1}{2}\cos\theta - \cos\theta\\[1mm]
&=-\frac{3}{2}\cos\theta.
\end{aligned}
\]
4. For the denominator, note that \(\sin150^\circ=\frac{1}{2}\) and \(\tan 180^\circ=0\). Hence,
\[
\cos \theta \cdot \sin150^\circ - \tan 180^\circ=\cos \theta \cdot \frac{1}{2}-0=\frac{1}{2}\cos\theta.
\]
5. Dividing numerator and denominator we have
\[
\frac{-\frac{3}{2}\cos\theta}{\frac{1}{2}\cos\theta}=-3,
\]
provided \(\cos\theta\ne 0\).
---
**Problem 53**
We need to prove that
\[
\frac{\cos x}{\sin 2x}-\frac{\cos 2x}{2\sin x}=\sin x.
\]
1. Use the double-angle identity \(\sin 2x=2\sin x \cos x\). Thus,
\[
\frac{\cos x}{\sin2x}=\frac{\cos x}{2\sin x\cos x}=\frac{1}{2\sin x}.
\]
2. Substitute back into the expression:
\[
\frac{1}{2\sin x}-\frac{\cos2x}{2\sin x}=\frac{1-\cos2x}{2\sin x}.
\]
3. Use the identity \(1-\cos2x=2\sin^2 x\). Hence,
\[
\frac{2\sin^2 x}{2\sin x}=\sin x.
\]
Thus, the given equation is proved.
---
**Problem 5.4**
We are given
\[
\frac{\cos 60^\circ}{\sin x}-\frac{\sin 60^\circ}{\cos x}=2.
\]
*Step 5.4.1*
1. Note that \(\cos60^\circ=\frac{1}{2}\) and \(\sin60^\circ=\frac{\sqrt{3}}{2}\). Then the equation becomes
\[
\frac{\frac{1}{2}}{\sin x}-\frac{\frac{\sqrt{3}}{2}}{\cos x}=2.
\]
2. Multiply both sides by 2:
\[
\frac{1}{\sin x}-\frac{\sqrt{3}}{\cos x}=4.
\]
3. Multiply through by \(\sin x \cos x\) to obtain
\[
\cos x-\sqrt{3}\sin x=4\sin x\cos x.
\]
4. Recognize that \(4\sin x\cos x=2\sin2x\), so
\[
\cos x-\sqrt{3}\sin x=2\sin2x.
\]
5. Express the left-hand side in the form \(R\cos(x+\phi)\). Since
\[
\cos(x+60^\circ)=\cos x\cos60^\circ-\sin x\sin60^\circ=\frac{1}{2}\cos x-\frac{\sqrt{3}}{2}\sin x,
\]
multiplying by 2 gives
\[
2\cos(x+60^\circ)=\cos x-\sqrt{3}\sin x.
\]
6. Therefore, the equation becomes
\[
2\cos(x+60^\circ)=2\sin2x.
\]
Dividing both sides by 2:
\[
\cos(x+60^\circ)=\sin2x.
\]
7. Recall that \(\sin2x=\cos(90^\circ-2x)\), so finally we have
\[
\cos(x+60^\circ)=\cos(90^\circ-2x).
\]
*Step 5.4.2*
To find the general solution of
\[
\cos(x+60^\circ)=\cos(90^\circ-2x),
\]
we use the cosine identity: If \(\cos A=\cos B\), then either
\[
A=B+360^\circ k\quad \text{or}\quad A=-B+360^\circ k,\quad k\in\mathbb Z.
\]
**Case 1:**
\[
x+60^\circ=90^\circ-2x+360^\circ k.
\]
Solve for \(x\):
\[
\begin{aligned}
x+60^\circ+2x&=90^\circ+360^\circ k,\\[1mm]
3x&=30^\circ+360^\circ k,\\[1mm]
x&=10^\circ+120^\circ k.
\end{aligned}
\]
**Case 2:**
\[
x+60^\circ=-(90^\circ-2x)+360^\circ k.
\]
Simplify the right-hand side:
\[
x+60^\circ=-90^\circ+2x+360^\circ k.
\]
Solve for \(x\):
\[
\begin{aligned}
60^\circ+90^\circ &=2x-x+360^\circ k,\\[1mm]
150^\circ&=x+360^\circ k,\\[1mm]
x&=150^\circ-360^\circ k.
\end{aligned}
\]
Since \(k\) is any integer, writing \(k'=-k\) gives the general solution:
\[
x=150^\circ+360^\circ k,\quad k\in\mathbb Z.
\]
Thus, the general solutions are
\[
x=10^\circ+120^\circ k\quad \text{or}\quad x=150^\circ+360^\circ k,\quad k\in\mathbb Z.
\]
---
**Problem 55**
We are given that
\[
\cos22.5^\circ=\frac{a}{c}
\]
and that \(a\), \(b\), and \(c\) are the sides of a right triangle (with \(a^2+b^2=c^2\)). In such a triangle, if we assume that the angle corresponding to \(a\) is \(22.5^\circ\), then
\[
\sin22.5^\circ=\frac{b}{c}.
\]
To show that
\[
\frac{2ab}{c^2}=\frac{\sqrt{2}}{2},
\]
follow these steps:
1. Write the left-hand side in terms of ratios:
\[
\frac{2ab}{c^2}=2\left(\frac{a}{c}\right)\left(\frac{b}{c}\right)=2\cos22.5^\circ\,\sin22.5^\circ.
\]
2. Use the double-angle identity for sine:
\[
2\cos22.5^\circ\,\sin22.5^\circ=\sin(2\times22.5^\circ)=\sin45^\circ.
\]
3. Recall that
\[
\sin45^\circ=\frac{\sqrt{2}}{2}.
\]
Thus,
\[
\frac{2ab}{c^2}=\frac{\sqrt{2}}{2}.
\]
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution