Question
upstudy study bank question image url

S2 Simplify the following without using a calculator: \[ \frac{\sin \left(90^{\circ}-\theta\right) \cdot \cos 480^{\circ}+\cos \left(180^{\circ}-\theta\right)}{\cos \theta \cdot \sin 150^{\circ}-\tan 180^{\circ}} \] 53 Prove that \( \frac{\cos x}{\sin 2 x}-\frac{\cos 2 x}{2 \sin x}=\sin x \) 5.4. Givex: \( \frac{\cos 60^{\circ}}{\sin x}-\frac{\sin 60^{\circ}}{\cos x}=2 \) 5.4.1 Show that the equation \( \frac{\cos 60^{\circ}}{\sin x}-\frac{\sin 60^{\circ}}{\cos x}=2 \) can be written as \[ \cos \left(x+60^{\circ}\right)=\cos \left(90^{\circ}-2 x\right) \] 5.4.2 Ienec, or otherwise, determine the general solution of \( \frac{\cos 60^{\circ}}{\sin x}-\frac{\sin 60^{\circ}}{\cos x}=2 \) 55 Given that \( \cos 22,5^{\circ}=\frac{a}{c} \) and \( a^{2}+b^{2}=c^{2} \). With the aid of a diagram, or otherwise, show that \( \frac{2 a b}{c^{2}}=\frac{\sqrt{2}}{2} \).

Ask by Bryant Hall. in South Africa
Mar 09,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

**S2 Simplification:** \[ \frac{\sin(90^\circ-\theta) \cdot \cos480^\circ + \cos(180^\circ-\theta)}{\cos\theta \cdot \sin150^\circ - \tan180^\circ} = -3 \] **Proof of Problem 53:** \[ \frac{\cos x}{\sin2x} - \frac{\cos2x}{2\sin x} = \sin x \] **General Solution for Problem 5.4:** \[ x = 10^\circ + 120^\circ k \quad \text{or} \quad x = 150^\circ + 360^\circ k, \quad k \in \mathbb{Z} \] **Problem 55 Simplification:** \[ \frac{2ab}{c^2} = \frac{\sqrt{2}}{2} \]

Solution

**Problem S2** We want to simplify \[ \frac{\sin \left(90^\circ-\theta\right) \cdot \cos 480^\circ+\cos \left(180^\circ-\theta\right)}{\cos \theta \cdot \sin 150^\circ-\tan 180^\circ}. \] 1. Use the identity \(\sin(90^\circ-\theta)=\cos \theta\). 2. Note that \(\cos 480^\circ=\cos(480^\circ-360^\circ)=\cos 120^\circ=-\frac{1}{2}\). 3. Use \(\cos(180^\circ-\theta)=-\cos \theta\). Thus, the numerator becomes \[ \begin{aligned} \sin(90^\circ-\theta)\cdot \cos 480^\circ + \cos(180^\circ-\theta) &=\cos\theta \cdot \left(-\frac{1}{2}\right) - \cos\theta\\[1mm] &=-\frac{1}{2}\cos\theta - \cos\theta\\[1mm] &=-\frac{3}{2}\cos\theta. \end{aligned} \] 4. For the denominator, note that \(\sin150^\circ=\frac{1}{2}\) and \(\tan 180^\circ=0\). Hence, \[ \cos \theta \cdot \sin150^\circ - \tan 180^\circ=\cos \theta \cdot \frac{1}{2}-0=\frac{1}{2}\cos\theta. \] 5. Dividing numerator and denominator we have \[ \frac{-\frac{3}{2}\cos\theta}{\frac{1}{2}\cos\theta}=-3, \] provided \(\cos\theta\ne 0\). --- **Problem 53** We need to prove that \[ \frac{\cos x}{\sin 2x}-\frac{\cos 2x}{2\sin x}=\sin x. \] 1. Use the double-angle identity \(\sin 2x=2\sin x \cos x\). Thus, \[ \frac{\cos x}{\sin2x}=\frac{\cos x}{2\sin x\cos x}=\frac{1}{2\sin x}. \] 2. Substitute back into the expression: \[ \frac{1}{2\sin x}-\frac{\cos2x}{2\sin x}=\frac{1-\cos2x}{2\sin x}. \] 3. Use the identity \(1-\cos2x=2\sin^2 x\). Hence, \[ \frac{2\sin^2 x}{2\sin x}=\sin x. \] Thus, the given equation is proved. --- **Problem 5.4** We are given \[ \frac{\cos 60^\circ}{\sin x}-\frac{\sin 60^\circ}{\cos x}=2. \] *Step 5.4.1* 1. Note that \(\cos60^\circ=\frac{1}{2}\) and \(\sin60^\circ=\frac{\sqrt{3}}{2}\). Then the equation becomes \[ \frac{\frac{1}{2}}{\sin x}-\frac{\frac{\sqrt{3}}{2}}{\cos x}=2. \] 2. Multiply both sides by 2: \[ \frac{1}{\sin x}-\frac{\sqrt{3}}{\cos x}=4. \] 3. Multiply through by \(\sin x \cos x\) to obtain \[ \cos x-\sqrt{3}\sin x=4\sin x\cos x. \] 4. Recognize that \(4\sin x\cos x=2\sin2x\), so \[ \cos x-\sqrt{3}\sin x=2\sin2x. \] 5. Express the left-hand side in the form \(R\cos(x+\phi)\). Since \[ \cos(x+60^\circ)=\cos x\cos60^\circ-\sin x\sin60^\circ=\frac{1}{2}\cos x-\frac{\sqrt{3}}{2}\sin x, \] multiplying by 2 gives \[ 2\cos(x+60^\circ)=\cos x-\sqrt{3}\sin x. \] 6. Therefore, the equation becomes \[ 2\cos(x+60^\circ)=2\sin2x. \] Dividing both sides by 2: \[ \cos(x+60^\circ)=\sin2x. \] 7. Recall that \(\sin2x=\cos(90^\circ-2x)\), so finally we have \[ \cos(x+60^\circ)=\cos(90^\circ-2x). \] *Step 5.4.2* To find the general solution of \[ \cos(x+60^\circ)=\cos(90^\circ-2x), \] we use the cosine identity: If \(\cos A=\cos B\), then either \[ A=B+360^\circ k\quad \text{or}\quad A=-B+360^\circ k,\quad k\in\mathbb Z. \] **Case 1:** \[ x+60^\circ=90^\circ-2x+360^\circ k. \] Solve for \(x\): \[ \begin{aligned} x+60^\circ+2x&=90^\circ+360^\circ k,\\[1mm] 3x&=30^\circ+360^\circ k,\\[1mm] x&=10^\circ+120^\circ k. \end{aligned} \] **Case 2:** \[ x+60^\circ=-(90^\circ-2x)+360^\circ k. \] Simplify the right-hand side: \[ x+60^\circ=-90^\circ+2x+360^\circ k. \] Solve for \(x\): \[ \begin{aligned} 60^\circ+90^\circ &=2x-x+360^\circ k,\\[1mm] 150^\circ&=x+360^\circ k,\\[1mm] x&=150^\circ-360^\circ k. \end{aligned} \] Since \(k\) is any integer, writing \(k'=-k\) gives the general solution: \[ x=150^\circ+360^\circ k,\quad k\in\mathbb Z. \] Thus, the general solutions are \[ x=10^\circ+120^\circ k\quad \text{or}\quad x=150^\circ+360^\circ k,\quad k\in\mathbb Z. \] --- **Problem 55** We are given that \[ \cos22.5^\circ=\frac{a}{c} \] and that \(a\), \(b\), and \(c\) are the sides of a right triangle (with \(a^2+b^2=c^2\)). In such a triangle, if we assume that the angle corresponding to \(a\) is \(22.5^\circ\), then \[ \sin22.5^\circ=\frac{b}{c}. \] To show that \[ \frac{2ab}{c^2}=\frac{\sqrt{2}}{2}, \] follow these steps: 1. Write the left-hand side in terms of ratios: \[ \frac{2ab}{c^2}=2\left(\frac{a}{c}\right)\left(\frac{b}{c}\right)=2\cos22.5^\circ\,\sin22.5^\circ. \] 2. Use the double-angle identity for sine: \[ 2\cos22.5^\circ\,\sin22.5^\circ=\sin(2\times22.5^\circ)=\sin45^\circ. \] 3. Recall that \[ \sin45^\circ=\frac{\sqrt{2}}{2}. \] Thus, \[ \frac{2ab}{c^2}=\frac{\sqrt{2}}{2}. \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To simplify the expression, we first note that \(\sin(90^{\circ} - \theta) = \cos \theta\) and \(\cos(480^{\circ})\) can be simplified to \(\cos(480^{\circ} - 360^{\circ}) = \cos(120^{\circ}) = -\frac{1}{2}\). The cosine values for angles like \(180^\circ - \theta\) is \(-\cos\theta\). Thus, we can replace the trigonometric functions in the expression and simplify step by step. Now, regarding problem-solving tips, a common mistake many students make is to overlook the periodic nature of trigonometric functions, especially when working with angles greater than \(360^{\circ}\). Always reduce angles into the first circle to make calculations easier!

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy