Question
upstudy study bank question image url

5) \( \frac{\cos (x)-1}{1+\cos (x)}-\frac{1+\cos (x)}{\cos (x)-1}=4 \cot (x) \csc (x) \)

Ask by Wyatt Carroll. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solution to the equation is all real numbers except integer multiples of π.

Solution

Solve the equation \( \frac{\cos (x)-1}{1+\cos (x)}-\frac{1+\cos (x)}{\cos (x)-1}=4 \cot (x) \csc (x) \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=4\cot\left(x\right)\csc\left(x\right)\) - step1: Find the domain: \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=4\cot\left(x\right)\csc\left(x\right),x\neq k\pi ,k \in \mathbb{Z}\) - step2: Rewrite the expression: \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=4\times \frac{\cos\left(x\right)}{\sin\left(x\right)}\times \frac{1}{\sin\left(x\right)}\) - step3: Simplify: \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=\frac{4\cos\left(x\right)}{\sin^{2}\left(x\right)}\) - step4: Multiply both sides of the equation by LCD: \(\left(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}\right)\left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\sin^{2}\left(x\right)=\frac{4\cos\left(x\right)}{\sin^{2}\left(x\right)}\times \left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\sin^{2}\left(x\right)\) - step5: Simplify the equation: \(\left(\cos\left(x\right)-1\right)\left(\cos\left(x\right)-1\right)\sin^{2}\left(x\right)+\left(-1-\cos\left(x\right)\right)\left(1+\cos\left(x\right)\right)\sin^{2}\left(x\right)=4\cos\left(x\right)\left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\) - step6: Calculate: \(\left(\cos^{2}\left(x\right)-2\cos\left(x\right)+1\right)\sin^{2}\left(x\right)+\left(-1-2\cos\left(x\right)-\cos^{2}\left(x\right)\right)\sin^{2}\left(x\right)=4\cos\left(x\right)\left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\) - step7: Rewrite the expression: \(-4\cos\left(x\right)+4\cos^{3}\left(x\right)=-4\cos\left(x\right)+4\cos^{3}\left(x\right)\) - step8: Cancel equal terms: \(0=0\) - step9: The statement is true: \(x \in \mathbb{R}\) - step10: Check if the solution is in the defined range: \(x \in \mathbb{R},x\neq k\pi ,k \in \mathbb{Z}\) - step11: Find the intersection: \(x\neq k\pi ,k \in \mathbb{Z}\) The solution to the equation \( \frac{\cos (x)-1}{1+\cos (x)}-\frac{1+\cos (x)}{\cos (x)-1}=4 \cot (x) \csc (x) \) is \( x \neq k\pi, k \in \mathbb{Z} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Let's start solving the given equation: \[ \frac{\cos(x) - 1}{1 + \cos(x)} - \frac{1 + \cos(x)}{\cos(x) - 1} = 4 \cot(x) \csc(x) \] First, we need a common denominator for the left-hand side. The common denominator is \((1 + \cos(x))(\cos(x) - 1)\). Thus, we rewrite each fraction: \[ \frac{(\cos(x) - 1)^2 - (1 + \cos(x))^2}{(1 + \cos(x))(\cos(x) - 1)} = 4 \cot(x) \csc(x) \] Next, we'll simplify the numerator: \[ (\cos(x) - 1)^2 - (1 + \cos(x))^2 = (\cos^2(x) - 2\cos(x) + 1) - (1 + 2\cos(x) + \cos^2(x)) \] \[ = \cos^2(x) - 2\cos(x) + 1 - 1 - 2\cos(x) - \cos^2(x) = -4\cos(x) \] Now, the left side becomes: \[ \frac{-4\cos(x)}{(1 + \cos(x))(\cos(x) - 1)} = 4 \cot(x) \csc(x) \] Thus, we need to solve: \[ \frac{-4\cos(x)}{(1 + \cos(x))(cos(x) - 1)} = 4 \cot(x) \csc(x) \] Next, let's substitute \(\cot(x)\) and \(\csc(x)\): \[ \cot(x) = \frac{\cos(x)}{\sin(x)}, \quad \csc(x) = \frac{1}{\sin(x)} \implies \cot(x) \csc(x) = \frac{\cos(x)}{\sin^2(x)} \] So, we can rewrite the equation: \[ \frac{-4\cos(x)}{(1 + \cos(x))(cos(x) - 1)} = \frac{4\cos(x)}{\sin^2(x)} \] We simplify this to: \[ - \frac{1}{(1 + \cos(x))(cos(x) - 1)} = \frac{1}{\sin^2(x)} \] Taking the reciprocal gives us: \[ (1 + \cos(x))(1 - \cos(x)) = - \sin^2(x) \] Notice that \(1 - \cos^2(x) = \sin^2(x)\), leading us to: \[ 1 - \cos^2(x) = - \sin^2(x) \] which indicates \(1 = 0\), an impossible scenario. Thus, the original equation does not hold true except perhaps under specific conditions or for specific values of \(x\). Solving it further or identifying values may provide additional insights or perpendicular conjectures, but generally, this algebra ends up being contradictory, signaling either an error in the original presupposition or an elementary constraint upon the variables involved. In conclusion, the equation doesn't hold true in general and should be approached with caution.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy