Pregunta
upstudy study bank question image url

5) \( \frac{\cos (x)-1}{1+\cos (x)}-\frac{1+\cos (x)}{\cos (x)-1}=4 \cot (x) \csc (x) \)

Ask by Wyatt Carroll. in the United States
Feb 25,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The solution to the equation is all real numbers except integer multiples of π.

Solución

Solve the equation \( \frac{\cos (x)-1}{1+\cos (x)}-\frac{1+\cos (x)}{\cos (x)-1}=4 \cot (x) \csc (x) \). Solve the equation by following steps: - step0: Solve for \(x\): \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=4\cot\left(x\right)\csc\left(x\right)\) - step1: Find the domain: \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=4\cot\left(x\right)\csc\left(x\right),x\neq k\pi ,k \in \mathbb{Z}\) - step2: Rewrite the expression: \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=4\times \frac{\cos\left(x\right)}{\sin\left(x\right)}\times \frac{1}{\sin\left(x\right)}\) - step3: Simplify: \(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}=\frac{4\cos\left(x\right)}{\sin^{2}\left(x\right)}\) - step4: Multiply both sides of the equation by LCD: \(\left(\frac{\cos\left(x\right)-1}{1+\cos\left(x\right)}-\frac{1+\cos\left(x\right)}{\cos\left(x\right)-1}\right)\left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\sin^{2}\left(x\right)=\frac{4\cos\left(x\right)}{\sin^{2}\left(x\right)}\times \left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\sin^{2}\left(x\right)\) - step5: Simplify the equation: \(\left(\cos\left(x\right)-1\right)\left(\cos\left(x\right)-1\right)\sin^{2}\left(x\right)+\left(-1-\cos\left(x\right)\right)\left(1+\cos\left(x\right)\right)\sin^{2}\left(x\right)=4\cos\left(x\right)\left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\) - step6: Calculate: \(\left(\cos^{2}\left(x\right)-2\cos\left(x\right)+1\right)\sin^{2}\left(x\right)+\left(-1-2\cos\left(x\right)-\cos^{2}\left(x\right)\right)\sin^{2}\left(x\right)=4\cos\left(x\right)\left(1+\cos\left(x\right)\right)\left(\cos\left(x\right)-1\right)\) - step7: Rewrite the expression: \(-4\cos\left(x\right)+4\cos^{3}\left(x\right)=-4\cos\left(x\right)+4\cos^{3}\left(x\right)\) - step8: Cancel equal terms: \(0=0\) - step9: The statement is true: \(x \in \mathbb{R}\) - step10: Check if the solution is in the defined range: \(x \in \mathbb{R},x\neq k\pi ,k \in \mathbb{Z}\) - step11: Find the intersection: \(x\neq k\pi ,k \in \mathbb{Z}\) The solution to the equation \( \frac{\cos (x)-1}{1+\cos (x)}-\frac{1+\cos (x)}{\cos (x)-1}=4 \cot (x) \csc (x) \) is \( x \neq k\pi, k \in \mathbb{Z} \).

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Mind Expander

Let's start solving the given equation: \[ \frac{\cos(x) - 1}{1 + \cos(x)} - \frac{1 + \cos(x)}{\cos(x) - 1} = 4 \cot(x) \csc(x) \] First, we need a common denominator for the left-hand side. The common denominator is \((1 + \cos(x))(\cos(x) - 1)\). Thus, we rewrite each fraction: \[ \frac{(\cos(x) - 1)^2 - (1 + \cos(x))^2}{(1 + \cos(x))(\cos(x) - 1)} = 4 \cot(x) \csc(x) \] Next, we'll simplify the numerator: \[ (\cos(x) - 1)^2 - (1 + \cos(x))^2 = (\cos^2(x) - 2\cos(x) + 1) - (1 + 2\cos(x) + \cos^2(x)) \] \[ = \cos^2(x) - 2\cos(x) + 1 - 1 - 2\cos(x) - \cos^2(x) = -4\cos(x) \] Now, the left side becomes: \[ \frac{-4\cos(x)}{(1 + \cos(x))(\cos(x) - 1)} = 4 \cot(x) \csc(x) \] Thus, we need to solve: \[ \frac{-4\cos(x)}{(1 + \cos(x))(cos(x) - 1)} = 4 \cot(x) \csc(x) \] Next, let's substitute \(\cot(x)\) and \(\csc(x)\): \[ \cot(x) = \frac{\cos(x)}{\sin(x)}, \quad \csc(x) = \frac{1}{\sin(x)} \implies \cot(x) \csc(x) = \frac{\cos(x)}{\sin^2(x)} \] So, we can rewrite the equation: \[ \frac{-4\cos(x)}{(1 + \cos(x))(cos(x) - 1)} = \frac{4\cos(x)}{\sin^2(x)} \] We simplify this to: \[ - \frac{1}{(1 + \cos(x))(cos(x) - 1)} = \frac{1}{\sin^2(x)} \] Taking the reciprocal gives us: \[ (1 + \cos(x))(1 - \cos(x)) = - \sin^2(x) \] Notice that \(1 - \cos^2(x) = \sin^2(x)\), leading us to: \[ 1 - \cos^2(x) = - \sin^2(x) \] which indicates \(1 = 0\), an impossible scenario. Thus, the original equation does not hold true except perhaps under specific conditions or for specific values of \(x\). Solving it further or identifying values may provide additional insights or perpendicular conjectures, but generally, this algebra ends up being contradictory, signaling either an error in the original presupposition or an elementary constraint upon the variables involved. In conclusion, the equation doesn't hold true in general and should be approached with caution.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad