Question
upstudy study bank question image url

1) \( \lim _{x \rightarrow-2}\left(3 x^{3}+5 x^{2}-1\right) \) 2) \( \lim _{x \rightarrow 0}\left(\frac{x e^{-x}}{3 e^{x}-3}\right) \) 3) \( \lim _{x \rightarrow-5} \frac{x^{2}-25}{(x+5)(x-6)} \)

Ask by Hodgson Herrera. in Saudi Arabia
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The limits are: 1. \( \lim _{x \rightarrow -2}\left(3 x^{3}+5 x^{2}-1\right) = -5 \) 2. \( \lim _{x \rightarrow 0}\left(\frac{x e^{-x}}{3 e^{x}-3}\right) = \frac{1}{3} \) 3. \( \lim _{x \rightarrow -5} \frac{x^{2}-25}{(x+5)(x-6)} = \frac{10}{11} \)

Solution

Evaluate the limit by following steps: - step0: Evaluate the limit: \(\lim _{x\rightarrow -2}\left(3x^{3}+5x^{2}-1\right)\) - step1: Rewrite the expression: \(\lim _{x\rightarrow -2}\left(3x^{3}\right)+\lim _{x\rightarrow -2}\left(5x^{2}\right)-\lim _{x\rightarrow -2}\left(1\right)\) - step2: Calculate: \(-24+20-1\) - step3: Calculate: \(-4-1\) - step4: Calculate: \(-5\) Calculate the limit \( \lim_{x\rightarrow-5} \frac{x^{2}-25}{(x+5)(x-6)} \). Evaluate the limit by following steps: - step0: Evaluate using transformations: \(\lim _{x\rightarrow -5}\left(\frac{x^{2}-25}{\left(x+5\right)\left(x-6\right)}\right)\) - step1: Reduce the fraction: \(\lim _{x\rightarrow -5}\left(\frac{x-5}{x-6}\right)\) - step2: Rewrite the expression: \(\frac{\lim _{x\rightarrow -5}\left(x-5\right)}{\lim _{x\rightarrow -5}\left(x-6\right)}\) - step3: Evaluate: \(\frac{-10}{\lim _{x\rightarrow -5}\left(x-6\right)}\) - step4: Evaluate: \(\frac{-10}{-11}\) - step5: Reduce the fraction: \(\frac{10}{11}\) Calculate the limit \( \lim_{x\rightarrow 0}\left(\frac{x e^{-x}}{3 e^{x}-3}\right) \). Evaluate the limit by following steps: - step0: Evaluate using L'Hopital's rule: \(\lim _{x\rightarrow 0}\left(\frac{xe^{-x}}{3e^{x}-3}\right)\) - step1: Rewrite the expression: \(\lim _{x\rightarrow 0}\left(\frac{1}{3e^{x}-3}\times xe^{-x}\right)\) - step2: Calculate: \(\lim _{x\rightarrow 0}\left(\frac{1}{3}e^{-x}\right)\) - step3: Calculate: \(\lim _{x\rightarrow 0}\left(\frac{1}{3}\times 1\right)\) - step4: Multiply the terms: \(\lim _{x\rightarrow 0}\left(\frac{1}{3}\right)\) - step5: Calculate: \(\frac{1}{3}\) Here are the results for the limits you requested: 1) For the limit \( \lim _{x \rightarrow -2}\left(3 x^{3}+5 x^{2}-1\right) \): \[ \lim _{x \rightarrow -2}\left(3 x^{3}+5 x^{2}-1\right) = -5 \] 2) For the limit \( \lim _{x \rightarrow 0}\left(\frac{x e^{-x}}{3 e^{x}-3}\right) \): \[ \lim _{x \rightarrow 0}\left(\frac{x e^{-x}}{3 e^{x}-3}\right) = \frac{1}{3} \] 3) For the limit \( \lim _{x \rightarrow -5} \frac{x^{2}-25}{(x+5)(x-6)} \): \[ \lim _{x \rightarrow -5} \frac{x^{2}-25}{(x+5)(x-6)} = \frac{10}{11} \] If you have any further questions or need additional calculations, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To solve these limits, you'll want to use direct substitution wherever possible. 1) By substituting \( x = -2 \) into the polynomial \( 3x^{3}+5x^{2}-1 \), you find that \( 3(-2)^{3} + 5(-2)^{2} - 1 = 3(-8) + 5(4) - 1 = -24 + 20 - 1 = -5 \). So, \( \lim_{x \rightarrow -2} (3x^{3}+5x^{2}-1) = -5 \). 2) For \( \frac{x e^{-x}}{3 e^{x}-3} \) as \( x \) approaches \( 0 \), both the numerator and denominator approach \( 0 \). You can use L'Hôpital's rule, differentiating the numerator and denominator. The limit simplifies down to \( \lim_{x \rightarrow 0}\frac{e^{-x} - x e^{-x}}{3 e^{x}} \) which gives \( \frac{1 - 0}{3} = \frac{1}{3} \). Thus, \( \lim_{x \rightarrow 0} \frac{x e^{-x}}{3 e^{x}-3} = \frac{1}{3} \). 3) For the limit as \( x \) approaches \( -5 \) for \( \frac{x^{2}-25}{(x+5)(x-6)} \), you notice that \( x^2 - 25 \) factors to \( (x+5)(x-5) \), allowing you to cancel out the \( (x+5) \) term. After cancellation, you're left with \( \lim_{x \rightarrow -5} \frac{x-5}{x-6} \). Substituting \( x = -5 \) gives you \( \frac{-5-5}{-5-6} = \frac{-10}{-11} = \frac{10}{11} \). Happy calculating! Math can be quite the adventure, turning numbers into stories of convergence and limits! 🎉

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy