Question
upstudy study bank question image url

4.- Dado los vectores \( u=\frac{3}{2} i-\frac{1}{2} j+k ; \quad w=i+j+2 k \) encontrar: \( w \times u \) :

Ask by Kirk Pollard. in Mexico
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

El producto cruz de los vectores w y u es 2i + 2j – 2k.

Solution

Dados los vectores   u = (3/2)i – (1/2)j + k  y  w = i + j + 2k, procedemos a calcular el producto cruz w × u. Recordemos que para dos vectores a = (a₁, a₂, a₃) y b = (b₁, b₂, b₃), se tiene   a × b = (a₂b₃ – a₃b₂)i – (a₁b₃ – a₃b₁)j + (a₁b₂ – a₂b₁)k. Identificamos los componentes:   w = (1, 1, 2)  y  u = (3/2, -1/2, 1). 1. Componente en i:   w₂·u₃ – w₃·u₂ = 1·1 – 2·(–1/2) = 1 + 1 = 2. 2. Componente en j:   –(w₁·u₃ – w₃·u₁) = –(1·1 – 2·(3/2)) = –(1 – 3) = –(–2) = 2. 3. Componente en k:   w₁·u₂ – w₂·u₁ = 1·(–1/2) – 1·(3/2) = –(1/2) – (3/2) = –4/2 = –2. Por lo tanto, se tiene:   w × u = 2i + 2j – 2k = 2(i + j – k). Respuesta final:   w × u = 2(i + j – k).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Para encontrar el producto vectorial \( w \times u \), necesitamos utilizar la determinante de una matriz en la que la primera fila son los vectores unitarios \( i, j, k \), la segunda fila son los componentes del vector \( w \) y la tercera fila son los componentes del vector \( u \). \[ w \times u = \begin{vmatrix} i & j & k \\ 1 & 1 & 2 \\ \frac{3}{2} & -\frac{1}{2} & 1 \end{vmatrix} \] Calculamos la determinante: \[ w \times u = i \begin{vmatrix} 1 & 2 \\ -\frac{1}{2} & 1 \end{vmatrix} - j \begin{vmatrix} 1 & 2 \\ \frac{3}{2} & 1 \end{vmatrix} + k \begin{vmatrix} 1 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{vmatrix} \] Calculando cada una de las determinantes: 1. Para el componente \( i \): \[ \begin{vmatrix} 1 & 2 \\ -\frac{1}{2} & 1 \end{vmatrix} = (1)(1) - (2)(-\frac{1}{2}) = 1 + 1 = 2 \] 2. Para el componente \( j \): \[ \begin{vmatrix} 1 & 2 \\ \frac{3}{2} & 1 \end{vmatrix} = (1)(1) - (2)(\frac{3}{2}) = 1 - 3 = -2 \] 3. Para el componente \( k \): \[ \begin{vmatrix} 1 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{vmatrix} = (1)(-\frac{1}{2}) - (1)(\frac{3}{2}) = -\frac{1}{2} - \frac{3}{2} = -2 \] Entonces, juntando todo, tenemos: \[ w \times u = 2i - (-2)j - 2k = 2i + 2j - 2k \] Por lo tanto, el resultado del producto vectorial \( w \times u \) es: \[ w \times u = 2i + 2j - 2k \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy