Question
upstudy study bank question image url

If a couplo mgR is applled at the end of a wire, the angle of twist \( \theta \) at a dist from tho fixed end is given by \[ \mathrm{mgR}=\frac{n a \theta}{21} \] Calculate \( n \) and its standard error given the following values: \( 0=0.200 \pm 0.009 \mathrm{rad} ; \mathrm{m}=3.500 \mathrm{~kg} \mathrm{I}=0.330 \pm 0.002 \mathrm{~m} \); \( 1=0.0047 \pm 0.0001 \mathrm{~m} ; \mathrm{R}=0.074 \pm 0.001 \mathrm{~m} ; g=9.760 \mathrm{~ms}^{-2} \) (Assume that the ( m end g are negligible)

Ask by Floyd Floyd. in Nigeria
Feb 24,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( n \approx 804.31 \) with a standard error of approximately 7.46.

Solution

To calculate \( n \) and its standard error, we first need to rearrange the given equation to solve for \( n \). Given equation: \[ \mathrm{mgR}=\frac{n a \theta}{21} \] Rearrange the equation to solve for \( n \): \[ n = \frac{21 \times \mathrm{mgR}}{a \theta} \] Now, we can substitute the given values into the equation to calculate \( n \) and its standard error. Given values: - \( \theta = 0.200 \pm 0.009 \) rad - \( m = 3.500 \) kg - \( g = 9.760 \) m/s\(^2\) - \( R = 0.074 \pm 0.001 \) m - \( a = 0.330 \pm 0.002 \) m - \( I = 0.0047 \pm 0.0001 \) m Substitute the values into the equation to calculate \( n \): \[ n = \frac{21 \times 3.500 \times 9.760 \times 0.074}{0.330 \times 0.200} \] Calculate \( n \) using the given values. Calculate the value by following steps: - step0: Calculate: \(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\) - step1: Multiply the terms: \(\frac{\frac{53.08464}{0.33}}{0.2}\) - step2: Divide the terms: \(\frac{\frac{221186}{1375}}{0.2}\) - step3: Convert the expressions: \(\frac{\frac{221186}{1375}}{\frac{1}{5}}\) - step4: Multiply by the reciprocal: \(\frac{221186}{1375}\times 5\) - step5: Reduce the numbers: \(\frac{221186}{275}\times 1\) - step6: Multiply: \(\frac{221186}{275}\) The value of \( n \) is approximately 804.31. To calculate the standard error of \( n \), we need to consider the standard errors of the given values and propagate them through the calculation. The standard error of \( n \) can be calculated using the formula: \[ \text{Standard Error of } n = \sqrt{\left(\frac{\partial n}{\partial \theta}\right)^2 \cdot \text{Standard Error of } \theta + \left(\frac{\partial n}{\partial a}\right)^2 \cdot \text{Standard Error of } a + \left(\frac{\partial n}{\partial R}\right)^2 \cdot \text{Standard Error of } R} \] Let's calculate the standard error of \( n \) using the given values. Calculate the value by following steps: - step0: Calculate: \(\sqrt{\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\) - step1: Multiply the terms: \(\sqrt{\left(\frac{\frac{53.08464}{0.33}}{0.2}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\) - step2: Divide the terms: \(\sqrt{\left(\frac{\frac{221186}{1375}}{0.2}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\) - step3: Divide the numbers: \(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\) - step4: Multiply the terms: \(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{53.08464}{0.33}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\) - step5: Divide the terms: \(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{221186}{1375}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\) - step6: Divide the numbers: \(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\) - step7: Multiply the terms: \(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{53.08464}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\) - step8: Divide the terms: \(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{221186}{1375}}{0.2}\right)^{2}\times 0.001^{2}}\) - step9: Divide the numbers: \(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.002^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.001^{2}}\) - step10: Convert the expressions: \(\sqrt{\left(\frac{221186}{275}\right)^{2}\left(\frac{9}{1000}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.002^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.001^{2}}\) - step11: Convert the expressions: \(\sqrt{\left(\frac{221186}{275}\right)^{2}\left(\frac{9}{1000}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{500}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.001^{2}}\) - step12: Convert the expressions: \(\sqrt{\left(\frac{221186}{275}\right)^{2}\left(\frac{9}{1000}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{500}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{1000}\right)^{2}}\) - step13: Multiply the numbers: \(\sqrt{\frac{995337^{2}}{137500^{2}}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{500}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{1000}\right)^{2}}\) - step14: Multiply the numbers: \(\sqrt{\frac{995337^{2}}{137500^{2}}+\frac{110593^{2}}{68750^{2}}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{1000}\right)^{2}}\) - step15: Multiply the numbers: \(\sqrt{\frac{995337^{2}}{137500^{2}}+\frac{110593^{2}}{68750^{2}}+\frac{110593^{2}}{137500^{2}}}\) - step16: Add the numbers: \(\sqrt{\frac{995337^{2}+221186^{2}+110593^{2}}{137500^{2}}}\) - step17: Use the properties of radicals: \(\frac{\sqrt{995337^{2}+221186^{2}+110593^{2}}}{\sqrt{137500^{2}}}\) - step18: Simplify the expression: \(\frac{110593\sqrt{81+4+1}}{137500}\) - step19: Add the numbers: \(\frac{110593\sqrt{86}}{137500}\) The standard error of \( n \) is approximately 7.46. Therefore, the value of \( n \) is approximately 804.31 with a standard error of approximately 7.46.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To calculate \( n \), we can rearrange the provided formula: \[ n = \frac{21 \cdot mgR}{a \theta} \] Plugging in the values, we have: - \( m = 3.500 \, \text{kg} \) - \( g = 9.760 \, \text{ms}^{-2} \) - \( R = 0.074 \pm 0.001 \, \text{m} \) - \( a = 0.0047 \pm 0.0001 \, \text{m} \) - \( \theta = 0.200 \pm 0.009 \, \text{rad} \) Next, substituting these values into the equation to compute \( n \) and then calculating the standard error by using the formula for propagation of uncertainty. With values in hand, you can have a blast calculating \( n \) while reminding yourself that calculations with uncertainties require a bit of extra care - think of it as a treasure hunt, where every value is a gem and the uncertainty tells you how shiny each gem really is! Happy calculating!

Related Questions

Latest Physics Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy