Responder
\( n \approx 804.31 \) with a standard error of approximately 7.46.
Solución
To calculate \( n \) and its standard error, we first need to rearrange the given equation to solve for \( n \).
Given equation: \[ \mathrm{mgR}=\frac{n a \theta}{21} \]
Rearrange the equation to solve for \( n \):
\[ n = \frac{21 \times \mathrm{mgR}}{a \theta} \]
Now, we can substitute the given values into the equation to calculate \( n \) and its standard error.
Given values:
- \( \theta = 0.200 \pm 0.009 \) rad
- \( m = 3.500 \) kg
- \( g = 9.760 \) m/s\(^2\)
- \( R = 0.074 \pm 0.001 \) m
- \( a = 0.330 \pm 0.002 \) m
- \( I = 0.0047 \pm 0.0001 \) m
Substitute the values into the equation to calculate \( n \):
\[ n = \frac{21 \times 3.500 \times 9.760 \times 0.074}{0.330 \times 0.200} \]
Calculate \( n \) using the given values.
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\)
- step1: Multiply the terms:
\(\frac{\frac{53.08464}{0.33}}{0.2}\)
- step2: Divide the terms:
\(\frac{\frac{221186}{1375}}{0.2}\)
- step3: Convert the expressions:
\(\frac{\frac{221186}{1375}}{\frac{1}{5}}\)
- step4: Multiply by the reciprocal:
\(\frac{221186}{1375}\times 5\)
- step5: Reduce the numbers:
\(\frac{221186}{275}\times 1\)
- step6: Multiply:
\(\frac{221186}{275}\)
The value of \( n \) is approximately 804.31.
To calculate the standard error of \( n \), we need to consider the standard errors of the given values and propagate them through the calculation.
The standard error of \( n \) can be calculated using the formula:
\[ \text{Standard Error of } n = \sqrt{\left(\frac{\partial n}{\partial \theta}\right)^2 \cdot \text{Standard Error of } \theta + \left(\frac{\partial n}{\partial a}\right)^2 \cdot \text{Standard Error of } a + \left(\frac{\partial n}{\partial R}\right)^2 \cdot \text{Standard Error of } R} \]
Let's calculate the standard error of \( n \) using the given values.
Calculate the value by following steps:
- step0: Calculate:
\(\sqrt{\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\)
- step1: Multiply the terms:
\(\sqrt{\left(\frac{\frac{53.08464}{0.33}}{0.2}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\)
- step2: Divide the terms:
\(\sqrt{\left(\frac{\frac{221186}{1375}}{0.2}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\)
- step3: Divide the numbers:
\(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\)
- step4: Multiply the terms:
\(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{53.08464}{0.33}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\)
- step5: Divide the terms:
\(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{\frac{221186}{1375}}{0.2}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\)
- step6: Divide the numbers:
\(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{21\times 3.5\times 9.76\times 0.074}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\)
- step7: Multiply the terms:
\(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{53.08464}{0.33}}{0.2}\right)^{2}\times 0.001^{2}}\)
- step8: Divide the terms:
\(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.002^{2}+\left(\frac{\frac{221186}{1375}}{0.2}\right)^{2}\times 0.001^{2}}\)
- step9: Divide the numbers:
\(\sqrt{\left(\frac{221186}{275}\right)^{2}\times 0.009^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.002^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.001^{2}}\)
- step10: Convert the expressions:
\(\sqrt{\left(\frac{221186}{275}\right)^{2}\left(\frac{9}{1000}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.002^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.001^{2}}\)
- step11: Convert the expressions:
\(\sqrt{\left(\frac{221186}{275}\right)^{2}\left(\frac{9}{1000}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{500}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\times 0.001^{2}}\)
- step12: Convert the expressions:
\(\sqrt{\left(\frac{221186}{275}\right)^{2}\left(\frac{9}{1000}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{500}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{1000}\right)^{2}}\)
- step13: Multiply the numbers:
\(\sqrt{\frac{995337^{2}}{137500^{2}}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{500}\right)^{2}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{1000}\right)^{2}}\)
- step14: Multiply the numbers:
\(\sqrt{\frac{995337^{2}}{137500^{2}}+\frac{110593^{2}}{68750^{2}}+\left(\frac{221186}{275}\right)^{2}\left(\frac{1}{1000}\right)^{2}}\)
- step15: Multiply the numbers:
\(\sqrt{\frac{995337^{2}}{137500^{2}}+\frac{110593^{2}}{68750^{2}}+\frac{110593^{2}}{137500^{2}}}\)
- step16: Add the numbers:
\(\sqrt{\frac{995337^{2}+221186^{2}+110593^{2}}{137500^{2}}}\)
- step17: Use the properties of radicals:
\(\frac{\sqrt{995337^{2}+221186^{2}+110593^{2}}}{\sqrt{137500^{2}}}\)
- step18: Simplify the expression:
\(\frac{110593\sqrt{81+4+1}}{137500}\)
- step19: Add the numbers:
\(\frac{110593\sqrt{86}}{137500}\)
The standard error of \( n \) is approximately 7.46.
Therefore, the value of \( n \) is approximately 804.31 with a standard error of approximately 7.46.
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución