If \( \alpha, \beta \) are the roots of the equation \( 3 x^{2}+5 x-1=0 \) Construct a quadratic equation whose roots are (1) \( 5 \alpha, 5 \beta \) \( \begin{array}{lll}\text { (2) } \alpha+\frac{1}{\beta}, \beta+\frac{1}{\alpha} & \text { (3) } \alpha^{3} \text { and } \beta^{3} \text { Assignment }\end{array} \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Extra Insights
To construct the new quadratic equations based on the roots given in your question, let's start with the provided roots \( \alpha \) and \( \beta \) of the original polynomial \( 3x^2 + 5x - 1 = 0 \). 1. **For the roots \( 5\alpha \) and \( 5\beta \)**: The sum of the roots \( 5\alpha + 5\beta = 5(\alpha + \beta) \) and the product of the roots \( 5\alpha \cdot 5\beta = 25(\alpha \beta) \). From the original equation, the coefficients give us: - \( \alpha + \beta = -\frac{5}{3} \) - \( \alpha \beta = -\frac{1}{3} \) Thus, - \( 5(\alpha + \beta) = 5 \left(-\frac{5}{3}\right) = -\frac{25}{3} \) - \( 25(\alpha \beta) = 25 \left(-\frac{1}{3}\right) = -\frac{25}{3} \) Using these, the quadratic equation is given by \( x^2 - \left(5\alpha + 5\beta\right)x + (5\alpha)(5\beta) = x^2 + \frac{25}{3}x - \frac{25}{3} \). Hence, multiplying through by 3 gives: \[ 3x^2 + 25x + 25 = 0 \] 2. **For the roots \( \alpha + \frac{1}{\beta} \) and \( \beta + \frac{1}{\alpha} \)**: The roots can be simplified as: - \( \alpha + \frac{1}{\beta} = \alpha - 3 \) and \( \beta + \frac{1}{\alpha} = \beta - 3 \) since \( \frac{1}{\beta} = -3 \) and \( \frac{1}{\alpha} = -3 \). The sum of these roots: \[ \left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = (\alpha + \beta) + \left(\frac{1}{\beta}+\frac{1}{\alpha}\right) = -\frac{5}{3} - 5 = -\frac{20}{3} \] The product of these roots: \[ \left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right) = \alpha\beta + \frac{\alpha}{\alpha} + \frac{\beta}{\beta} + \frac{1}{\alpha\beta} = -\frac{1}{3} + 1 + 1 - 3 = -\frac{1}{3} + 2 - 3 = -\frac{2}{3} \] Thus, the quadratic equation is \( x^2 + \frac{20}{3}x - \frac{2}{3} = 0 \), and multiplying through by 3 gets us: \[ 3x^2 + 20x - 2 = 0 \] 3. **For the roots \( \alpha^3 \) and \( \beta^3 \)**: Using the identity \( \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) \) where \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \): From earlier calculations, \((\alpha + \beta)^2 = \left(-\frac{5}{3}\right)^2 = \frac{25}{9}\) and \(-2\alpha\beta = 2 \cdot \frac{1}{3} = \frac{2}{3}\). Therefore, \[ \alpha^2 + \beta^2 = \frac{25}{9} + \frac{2}{3} = \frac{25}{9} + \frac{6}{9} = \frac{31}{9}. \] Thus: \[ \alpha^3 + \beta^3 = -\frac{5}{3} \left(\frac{31}{9} + \frac{1