Question
upstudy study bank question image url

If \( \alpha, \beta \) are the roots of the equation \( 3 x^{2}+5 x-1=0 \) Construct a quadratic equation whose roots are (1) \( 5 \alpha, 5 \beta \) \( \begin{array}{lll}\text { (2) } \alpha+\frac{1}{\beta}, \beta+\frac{1}{\alpha} & \text { (3) } \alpha^{3} \text { and } \beta^{3} \text { Assignment }\end{array} \)

Ask by Robbins Bates. in Nigeria
Mar 13,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. Quadratic equation with roots \(5\alpha\) and \(5\beta\): \(3x^2 + 25x + 25 = 0\) 2. Quadratic equation with roots \(\alpha + \frac{1}{\beta}\) and \(\beta + \frac{1}{\alpha}\): \(3x^2 - 10x + 5 = 0\) 3. Quadratic equation with roots \(\alpha^3\) and \(\beta^3\): \(27x^2 + 170x + 1 = 0\)

Solution

To construct the quadratic equations for the given roots, we will follow these steps: 1. **Find the roots \( \alpha \) and \( \beta \) of the original equation \( 3x^2 + 5x - 1 = 0 \)**. 2. **Use the relationships between the roots and coefficients to find the new roots for each case**. 3. **Construct the quadratic equations based on the new roots**. ### Step 1: Find the roots \( \alpha \) and \( \beta \) The roots of the quadratic equation \( ax^2 + bx + c = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation \( 3x^2 + 5x - 1 = 0 \), we have \( a = 3 \), \( b = 5 \), and \( c = -1 \). Let's calculate the roots \( \alpha \) and \( \beta \): \[ \alpha, \beta = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 3 \cdot (-1)}}{2 \cdot 3} \] Calculating the discriminant: \[ 5^2 - 4 \cdot 3 \cdot (-1) = 25 + 12 = 37 \] Now substituting back into the formula: \[ \alpha, \beta = \frac{-5 \pm \sqrt{37}}{6} \] ### Step 2: Construct the quadratic equations for the new roots #### (1) Roots: \( 5\alpha, 5\beta \) The sum and product of the roots \( 5\alpha \) and \( 5\beta \) are: \[ \text{Sum} = 5\alpha + 5\beta = 5(\alpha + \beta) \] \[ \text{Product} = 5\alpha \cdot 5\beta = 25\alpha\beta \] From Vieta's formulas for the original equation: \[ \alpha + \beta = -\frac{b}{a} = -\frac{5}{3} \] \[ \alpha\beta = \frac{c}{a} = -\frac{1}{3} \] Now substituting these values: \[ \text{Sum} = 5\left(-\frac{5}{3}\right) = -\frac{25}{3} \] \[ \text{Product} = 25\left(-\frac{1}{3}\right) = -\frac{25}{3} \] The quadratic equation with roots \( 5\alpha \) and \( 5\beta \) is: \[ x^2 - \left(-\frac{25}{3}\right)x + \left(-\frac{25}{3}\right) = 0 \] Multiplying through by 3 to eliminate the fraction: \[ 3x^2 + 25x + 25 = 0 \] #### (2) Roots: \( \alpha + \frac{1}{\beta}, \beta + \frac{1}{\alpha} \) Calculating the sum and product of these roots: \[ \text{Sum} = \left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = (\alpha + \beta) + \left(\frac{1}{\beta} + \frac{1}{\alpha}\right) \] Using \( \frac{1}{\beta} + \frac{1}{\alpha} = \frac{\alpha + \beta}{\alpha\beta} \): \[ \text{Sum} = -\frac{5}{3} + \frac{-\frac{5}{3}}{-\frac{1}{3}} = -\frac{5}{3} + 5 = \frac{10}{3} \] Now for the product: \[ \text{Product} = \left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right) = \alpha\beta + \alpha\cdot\frac{1}{\alpha} + \beta\cdot\frac{1}{\beta} + \frac{1}{\alpha\beta} \] This simplifies to: \[ \text{Product} = -\frac{1}{3} + 1 + 1 - 3 = \frac{5}{3} \] The quadratic equation is: \[ x^2 - \frac{10}{3}x + \frac{5}{3} = 0 \] Multiplying through by 3: \[ 3x^2 - 10x + 5 = 0 \] #### (3) Roots: \( \alpha^3, \beta^3 \) Using the identity \( \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) \): First, we find \( \alpha^2 + \beta^2 \): \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(-\frac{5}{3}\right)^2 - 2\left(-\frac{1}{3}\right) = \frac{25}{9} + \frac{2}{3} = \frac{25}{9} + \frac{6}{9} = \frac{31}{9} \] Now substituting into the identity: \[ \alpha^3 + \beta^3 = \left(-\frac{5}{3}\right)\left(\frac{31}{9} + \frac{1}{3}\right) = -\frac{5}{3}\left(\frac{31 + 3}{9}\right) = -\frac{5}{3}\left(\frac{34}{9}\right) = -\frac{170}{27} \] For the product \( \alpha^3 \beta^3 = (\alpha\beta)^3 = \left(-\frac{1}{3}\right)^3 = -\frac{1}{27} \). The quadratic equation is: \[ x^2 - \left(-\frac{170}{27}\right)x - \left(-\frac{1}{27}\right) = 0 \] Multiplying through by 27: \[ 27x^2 + 170x + 1 = 0 \] ### Summary of Quadratic Equations 1. For roots \( 5\alpha, 5\beta \): \( 3x^2 + 25x + 25 = 0 \) 2. For roots \( \alpha + \frac{1}{\

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

To construct the new quadratic equations based on the roots given in your question, let's start with the provided roots \( \alpha \) and \( \beta \) of the original polynomial \( 3x^2 + 5x - 1 = 0 \). 1. **For the roots \( 5\alpha \) and \( 5\beta \)**: The sum of the roots \( 5\alpha + 5\beta = 5(\alpha + \beta) \) and the product of the roots \( 5\alpha \cdot 5\beta = 25(\alpha \beta) \). From the original equation, the coefficients give us: - \( \alpha + \beta = -\frac{5}{3} \) - \( \alpha \beta = -\frac{1}{3} \) Thus, - \( 5(\alpha + \beta) = 5 \left(-\frac{5}{3}\right) = -\frac{25}{3} \) - \( 25(\alpha \beta) = 25 \left(-\frac{1}{3}\right) = -\frac{25}{3} \) Using these, the quadratic equation is given by \( x^2 - \left(5\alpha + 5\beta\right)x + (5\alpha)(5\beta) = x^2 + \frac{25}{3}x - \frac{25}{3} \). Hence, multiplying through by 3 gives: \[ 3x^2 + 25x + 25 = 0 \] 2. **For the roots \( \alpha + \frac{1}{\beta} \) and \( \beta + \frac{1}{\alpha} \)**: The roots can be simplified as: - \( \alpha + \frac{1}{\beta} = \alpha - 3 \) and \( \beta + \frac{1}{\alpha} = \beta - 3 \) since \( \frac{1}{\beta} = -3 \) and \( \frac{1}{\alpha} = -3 \). The sum of these roots: \[ \left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = (\alpha + \beta) + \left(\frac{1}{\beta}+\frac{1}{\alpha}\right) = -\frac{5}{3} - 5 = -\frac{20}{3} \] The product of these roots: \[ \left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right) = \alpha\beta + \frac{\alpha}{\alpha} + \frac{\beta}{\beta} + \frac{1}{\alpha\beta} = -\frac{1}{3} + 1 + 1 - 3 = -\frac{1}{3} + 2 - 3 = -\frac{2}{3} \] Thus, the quadratic equation is \( x^2 + \frac{20}{3}x - \frac{2}{3} = 0 \), and multiplying through by 3 gets us: \[ 3x^2 + 20x - 2 = 0 \] 3. **For the roots \( \alpha^3 \) and \( \beta^3 \)**: Using the identity \( \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) \) where \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \): From earlier calculations, \((\alpha + \beta)^2 = \left(-\frac{5}{3}\right)^2 = \frac{25}{9}\) and \(-2\alpha\beta = 2 \cdot \frac{1}{3} = \frac{2}{3}\). Therefore, \[ \alpha^2 + \beta^2 = \frac{25}{9} + \frac{2}{3} = \frac{25}{9} + \frac{6}{9} = \frac{31}{9}. \] Thus: \[ \alpha^3 + \beta^3 = -\frac{5}{3} \left(\frac{31}{9} + \frac{1

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy