Pregunta
upstudy study bank question image url

If \( \alpha, \beta \) are the roots of the equation \( 3 x^{2}+5 x-1=0 \) Construct a quadratic equation whose roots are (1) \( 5 \alpha, 5 \beta \) \( \begin{array}{lll}\text { (2) } \alpha+\frac{1}{\beta}, \beta+\frac{1}{\alpha} & \text { (3) } \alpha^{3} \text { and } \beta^{3} \text { Assignment }\end{array} \)

Ask by Robbins Bates. in Nigeria
Mar 13,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

1. Quadratic equation with roots \(5\alpha\) and \(5\beta\): \(3x^2 + 25x + 25 = 0\) 2. Quadratic equation with roots \(\alpha + \frac{1}{\beta}\) and \(\beta + \frac{1}{\alpha}\): \(3x^2 - 10x + 5 = 0\) 3. Quadratic equation with roots \(\alpha^3\) and \(\beta^3\): \(27x^2 + 170x + 1 = 0\)

Solución

To construct the quadratic equations for the given roots, we will follow these steps: 1. **Find the roots \( \alpha \) and \( \beta \) of the original equation \( 3x^2 + 5x - 1 = 0 \)**. 2. **Use the relationships between the roots and coefficients to find the new roots for each case**. 3. **Construct the quadratic equations based on the new roots**. ### Step 1: Find the roots \( \alpha \) and \( \beta \) The roots of the quadratic equation \( ax^2 + bx + c = 0 \) can be found using the quadratic formula: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] For our equation \( 3x^2 + 5x - 1 = 0 \), we have \( a = 3 \), \( b = 5 \), and \( c = -1 \). Let's calculate the roots \( \alpha \) and \( \beta \): \[ \alpha, \beta = \frac{-5 \pm \sqrt{5^2 - 4 \cdot 3 \cdot (-1)}}{2 \cdot 3} \] Calculating the discriminant: \[ 5^2 - 4 \cdot 3 \cdot (-1) = 25 + 12 = 37 \] Now substituting back into the formula: \[ \alpha, \beta = \frac{-5 \pm \sqrt{37}}{6} \] ### Step 2: Construct the quadratic equations for the new roots #### (1) Roots: \( 5\alpha, 5\beta \) The sum and product of the roots \( 5\alpha \) and \( 5\beta \) are: \[ \text{Sum} = 5\alpha + 5\beta = 5(\alpha + \beta) \] \[ \text{Product} = 5\alpha \cdot 5\beta = 25\alpha\beta \] From Vieta's formulas for the original equation: \[ \alpha + \beta = -\frac{b}{a} = -\frac{5}{3} \] \[ \alpha\beta = \frac{c}{a} = -\frac{1}{3} \] Now substituting these values: \[ \text{Sum} = 5\left(-\frac{5}{3}\right) = -\frac{25}{3} \] \[ \text{Product} = 25\left(-\frac{1}{3}\right) = -\frac{25}{3} \] The quadratic equation with roots \( 5\alpha \) and \( 5\beta \) is: \[ x^2 - \left(-\frac{25}{3}\right)x + \left(-\frac{25}{3}\right) = 0 \] Multiplying through by 3 to eliminate the fraction: \[ 3x^2 + 25x + 25 = 0 \] #### (2) Roots: \( \alpha + \frac{1}{\beta}, \beta + \frac{1}{\alpha} \) Calculating the sum and product of these roots: \[ \text{Sum} = \left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = (\alpha + \beta) + \left(\frac{1}{\beta} + \frac{1}{\alpha}\right) \] Using \( \frac{1}{\beta} + \frac{1}{\alpha} = \frac{\alpha + \beta}{\alpha\beta} \): \[ \text{Sum} = -\frac{5}{3} + \frac{-\frac{5}{3}}{-\frac{1}{3}} = -\frac{5}{3} + 5 = \frac{10}{3} \] Now for the product: \[ \text{Product} = \left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right) = \alpha\beta + \alpha\cdot\frac{1}{\alpha} + \beta\cdot\frac{1}{\beta} + \frac{1}{\alpha\beta} \] This simplifies to: \[ \text{Product} = -\frac{1}{3} + 1 + 1 - 3 = \frac{5}{3} \] The quadratic equation is: \[ x^2 - \frac{10}{3}x + \frac{5}{3} = 0 \] Multiplying through by 3: \[ 3x^2 - 10x + 5 = 0 \] #### (3) Roots: \( \alpha^3, \beta^3 \) Using the identity \( \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) \): First, we find \( \alpha^2 + \beta^2 \): \[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta = \left(-\frac{5}{3}\right)^2 - 2\left(-\frac{1}{3}\right) = \frac{25}{9} + \frac{2}{3} = \frac{25}{9} + \frac{6}{9} = \frac{31}{9} \] Now substituting into the identity: \[ \alpha^3 + \beta^3 = \left(-\frac{5}{3}\right)\left(\frac{31}{9} + \frac{1}{3}\right) = -\frac{5}{3}\left(\frac{31 + 3}{9}\right) = -\frac{5}{3}\left(\frac{34}{9}\right) = -\frac{170}{27} \] For the product \( \alpha^3 \beta^3 = (\alpha\beta)^3 = \left(-\frac{1}{3}\right)^3 = -\frac{1}{27} \). The quadratic equation is: \[ x^2 - \left(-\frac{170}{27}\right)x - \left(-\frac{1}{27}\right) = 0 \] Multiplying through by 27: \[ 27x^2 + 170x + 1 = 0 \] ### Summary of Quadratic Equations 1. For roots \( 5\alpha, 5\beta \): \( 3x^2 + 25x + 25 = 0 \) 2. For roots \( \alpha + \frac{1}{\

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Extra Insights

To construct the new quadratic equations based on the roots given in your question, let's start with the provided roots \( \alpha \) and \( \beta \) of the original polynomial \( 3x^2 + 5x - 1 = 0 \). 1. **For the roots \( 5\alpha \) and \( 5\beta \)**: The sum of the roots \( 5\alpha + 5\beta = 5(\alpha + \beta) \) and the product of the roots \( 5\alpha \cdot 5\beta = 25(\alpha \beta) \). From the original equation, the coefficients give us: - \( \alpha + \beta = -\frac{5}{3} \) - \( \alpha \beta = -\frac{1}{3} \) Thus, - \( 5(\alpha + \beta) = 5 \left(-\frac{5}{3}\right) = -\frac{25}{3} \) - \( 25(\alpha \beta) = 25 \left(-\frac{1}{3}\right) = -\frac{25}{3} \) Using these, the quadratic equation is given by \( x^2 - \left(5\alpha + 5\beta\right)x + (5\alpha)(5\beta) = x^2 + \frac{25}{3}x - \frac{25}{3} \). Hence, multiplying through by 3 gives: \[ 3x^2 + 25x + 25 = 0 \] 2. **For the roots \( \alpha + \frac{1}{\beta} \) and \( \beta + \frac{1}{\alpha} \)**: The roots can be simplified as: - \( \alpha + \frac{1}{\beta} = \alpha - 3 \) and \( \beta + \frac{1}{\alpha} = \beta - 3 \) since \( \frac{1}{\beta} = -3 \) and \( \frac{1}{\alpha} = -3 \). The sum of these roots: \[ \left(\alpha + \frac{1}{\beta}\right) + \left(\beta + \frac{1}{\alpha}\right) = (\alpha + \beta) + \left(\frac{1}{\beta}+\frac{1}{\alpha}\right) = -\frac{5}{3} - 5 = -\frac{20}{3} \] The product of these roots: \[ \left(\alpha + \frac{1}{\beta}\right)\left(\beta + \frac{1}{\alpha}\right) = \alpha\beta + \frac{\alpha}{\alpha} + \frac{\beta}{\beta} + \frac{1}{\alpha\beta} = -\frac{1}{3} + 1 + 1 - 3 = -\frac{1}{3} + 2 - 3 = -\frac{2}{3} \] Thus, the quadratic equation is \( x^2 + \frac{20}{3}x - \frac{2}{3} = 0 \), and multiplying through by 3 gets us: \[ 3x^2 + 20x - 2 = 0 \] 3. **For the roots \( \alpha^3 \) and \( \beta^3 \)**: Using the identity \( \alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2) \) where \( \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \): From earlier calculations, \((\alpha + \beta)^2 = \left(-\frac{5}{3}\right)^2 = \frac{25}{9}\) and \(-2\alpha\beta = 2 \cdot \frac{1}{3} = \frac{2}{3}\). Therefore, \[ \alpha^2 + \beta^2 = \frac{25}{9} + \frac{2}{3} = \frac{25}{9} + \frac{6}{9} = \frac{31}{9}. \] Thus: \[ \alpha^3 + \beta^3 = -\frac{5}{3} \left(\frac{31}{9} + \frac{1

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad