Question
upstudy study bank question image url

21. \( \frac{1}{6}+\frac{2}{3}-\frac{5}{12} \) 22. \( \frac{3}{10}-\frac{1}{5}+\frac{7}{20} \) 23. \( \frac{5}{12}+\frac{1}{4}-\frac{3}{8} \) 24. \( \frac{7}{15}-\frac{1}{5}+\frac{3}{10} \) 25. \( \frac{2}{9}+\frac{5}{6}-\frac{7}{18} \) 26. \( \frac{3}{7}-\frac{1}{14}+\frac{5}{28} \) 27. \( \frac{4}{5}+\frac{7}{10}-\frac{9}{20} \) 28. \( \frac{5}{6}-\frac{1}{3}+\frac{7}{12} \) 29. \( \frac{8}{15}+\frac{2}{5}-\frac{3}{10} \) 30. \( \frac{9}{20}-\frac{1}{4}+\frac{3}{10} \)

Ask by Bolton Hall. in Colombia
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

21. 5/12 22. 9/20 23. 7/24 24. 17/30 25. 2/3 26. 15/28 27. 21/20 28. 13/12 29. 19/30 30. 1/2

Solution

Aquí están los cálculos paso a paso y los resultados finales: 21. (1/6) + (2/3) – (5/12)  • Convertimos todos a denominador 12:   1/6 = 2/12   2/3 = 8/12  • Sumamos y restamos: (2/12 + 8/12 – 5/12) = (2 + 8 – 5)/12 = 5/12 Resultado: 5/12 22. (3/10) – (1/5) + (7/20)  • Usamos denominador 20:   3/10 = 6/20   1/5 = 4/20  • Operación: (6/20 – 4/20 + 7/20) = (6 – 4 + 7)/20 = 9/20 Resultado: 9/20 23. (5/12) + (1/4) – (3/8)  • Buscamos denominador común; usamos 24 (ya que 12, 4 y 8 dividen 24):   5/12 = 10/24   1/4 = 6/24   3/8 = 9/24  • Operamos: (10/24 + 6/24 – 9/24) = (10 + 6 – 9)/24 = 7/24 Resultado: 7/24 24. (7/15) – (1/5) + (3/10)  • Denominadores: 15, 5 y 10. Se puede usar 30:   7/15 = 14/30   1/5 = 6/30   3/10 = 9/30  • Suma: (14/30 – 6/30 + 9/30) = (14 – 6 + 9)/30 = 17/30 Resultado: 17/30 25. (2/9) + (5/6) – (7/18)  • Denominadores: 9, 6 y 18. Usamos 18:   2/9 = 4/18   5/6 = 15/18   7/18 se mantiene igual  • Operamos: (4/18 + 15/18 – 7/18) = (4 + 15 – 7)/18 = 12/18 = 2/3 (simplificando) Resultado: 2/3 26. (3/7) – (1/14) + (5/28)  • Denominadores: 7, 14 y 28. Usamos 28:   3/7 = 12/28   1/14 = 2/28  • Cálculo: (12/28 – 2/28 + 5/28) = (12 – 2 + 5)/28 = 15/28 Resultado: 15/28 27. (4/5) + (7/10) – (9/20)  • Denominadores: 5, 10 y 20. Usamos 20:   4/5 = 16/20   7/10 = 14/20  • Operamos: (16/20 + 14/20 – 9/20) = (16 + 14 – 9)/20 = 21/20 Resultado: 21/20 28. (5/6) – (1/3) + (7/12)  • Denominadores: 6, 3 y 12. Usamos 12:   5/6 = 10/12   1/3 = 4/12  • Operación: (10/12 – 4/12 + 7/12) = (10 – 4 + 7)/12 = 13/12 Resultado: 13/12 29. (8/15) + (2/5) – (3/10)  • Denominadores: 15, 5 y 10. Usamos 30:   8/15 = 16/30   2/5 = 12/30   3/10 = 9/30  • Operación: (16/30 + 12/30 – 9/30) = (16 + 12 – 9)/30 = 19/30 Resultado: 19/30 30. (9/20) – (1/4) + (3/10)  • Denominadores: 20, 4 y 10. Usamos 20:   9/20 se queda igual   1/4 = 5/20   3/10 = 6/20  • Operación: (9/20 – 5/20 + 6/20) = (9 – 5 + 6)/20 = 10/20 = 1/2 Resultado: 1/2 Resumen de respuestas: 21. 5/12 22. 9/20 23. 7/24 24. 17/30 25. 2/3 26. 15/28 27. 21/20 28. 13/12 29. 19/30 30. 1/2

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To find the result of \( \frac{1}{6}+\frac{2}{3}-\frac{5}{12} \), first, we convert all the fractions to have a common denominator, which is 12. This gives us \( \frac{2}{12} + \frac{8}{12} - \frac{5}{12} = \frac{5}{12} \). For \( \frac{3}{10}-\frac{1}{5}+\frac{7}{20} \), we also need a common denominator, which is 20. This converts to \( \frac{6}{20} - \frac{4}{20} + \frac{7}{20} = \frac{9}{20} \). Now, when solving \( \frac{5}{12}+\frac{1}{4}-\frac{3}{8} \), we convert everything to a denominator of 24. This becomes \( \frac{10}{24} + \frac{6}{24} - \frac{9}{24} = \frac{7}{24} \). Continuing, for \( \frac{7}{15}-\frac{1}{5}+\frac{3}{10} \), we find a common denominator of 30: \( \frac{14}{30} - \frac{6}{30} + \frac{9}{30} = \frac{17}{30} \). For \( \frac{2}{9}+\frac{5}{6}-\frac{7}{18} \), using a common denominator of 18, we get \( \frac{4}{18} + \frac{15}{18} - \frac{7}{18} = \frac{12}{18} \) or \( \frac{2}{3} \). Next, \( \frac{3}{7}-\frac{1}{14}+\frac{5}{28} \) can be simplified with a common denominator of 28: \( \frac{12}{28} - \frac{2}{28} + \frac{5}{28} = \frac{15}{28} \). For \( \frac{4}{5}+\frac{7}{10}-\frac{9}{20} \), we convert to a denominator of 20, yielding \( \frac{16}{20} + \frac{14}{20} - \frac{9}{20} = \frac{21}{20} \). Next, \( \frac{5}{6}-\frac{1}{3}+\frac{7}{12} \) combined gives us a denominator of 12: \( \frac{10}{12} - \frac{4}{12} + \frac{7}{12} = \frac{13}{12} \). For \( \frac{8}{15}+\frac{2}{5}-\frac{3}{10} \), using common denominators of 30 leads to \( \frac{16}{30} + \frac{12}{30} - \frac{9}{30} = \frac{19}{30} \). Finally, \( \frac{9}{20}-\frac{1}{4}+\frac{3}{10} \) transforms into a common denominator of 20, resulting in \( \frac{9}{20} - \frac{5}{20} + \frac{6}{20} = \frac{10}{20} \) or \( \frac{1}{2} \). Math is all about practice, and simplifying fractions can often lead to mistakes! One quick tip is to carefully redo any calculations when adding or subtracting fractions. Many mistakes come from failing to find that common denominator, so always double-check your work and keep your fractions organized! If you're fascinated by mathematical concepts, diving deeper into rational numbers and fractions offers rich territory! Consider exploring books on number theory or algebra for greater insights and fun problems to solve. You'll not only sharpen your skills, but you may also discover new techniques to wow your friends!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy