Question
upstudy study bank question image url

Tentukan daerah hasil (range) dari fungsi \( y=4+ \) \( 2 \sin 2 x \). A. \( \{y \mid-6 \leq y \leq 2, y \in \mathbb{R}\} \) B. \( \{y \mid-4 \leq y \leq 4, y \in \mathbb{R}\} \) C. \( \{y \mid-2 \leq y \leq 6, y \in \mathbb{R}\} \) D. \( \{y \mid 2 \leq y \leq 4, y \in \mathbb{R}\} \) E. \( \{y \mid 2 \leq y \leq 6, y \in \mathbb{R}\} \)

Ask by Mills Ruiz. in Indonesia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The range of the function \( y = 4 + 2 \sin 2x \) is \( \{y \mid 2 \leq y \leq 6, y \in \mathbb{R}\} \), which is option E.

Solution

We are given the function y = 4 + 2 sin 2x. Step 1. Recall that sin 2x has a range of [–1, 1]. Step 2. Multiply sin 2x by 2, so the new range becomes 2(–1) to 2(1), that is [–2, 2]. Step 3. Add 4 to each value in the interval, resulting in [4 + (–2), 4 + 2] which is [2, 6]. Thus, the range of the function is y ∈ [2, 6], which corresponds to option E.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Fungsi \( y = 4 + 2 \sin 2x \) memiliki komponen sinusoidal yang berosilasi. Karena nilai maksimum dari \( \sin \) adalah 1 dan nilai minimum adalah -1, kita dapat menghitung range dari fungsi ini. Jadi, perhitungan kita menjadi \( y = 4 + 2(1) \) dan \( y = 4 + 2(-1) \). Hal ini menghasilkan \( y = 6 \) dan \( y = 2 \), sehingga daerah hasilnya adalah \( 2 \leq y \leq 6 \). Mengetahui bahwa fungsi sinusoidal memiliki sifat periodik dan teratur, sangat membantu untuk menganalisis perilaku fungsi ini dalam jangka panjang. Fungsi ini akan terus berosilasi antara 2 dan 6 seiring berjalannya waktu, memungkinkan kita untuk memanfaatkan sifat ini dalam berbagai aplikasi praktis, seperti model gelombang dan fenomena periodik lainnya.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy