Find the exact value of each of the six trigonometric functions of \( \theta \), if \( (-2,-7) \) is a point on the terminal side of angle \( \theta \). \( \sin \theta=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression. Rationalize all denominator
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
To find the exact values of the six trigonometric functions of \( \theta \) given the point \( (-2, -7) \) on the terminal side of the angle, we first determine the radius \( r \) using the formula \( r = \sqrt{x^2 + y^2} \). Here, \( x = -2 \) and \( y = -7 \). Calculating \( r \): \[ r = \sqrt{(-2)^2 + (-7)^2} = \sqrt{4 + 49} = \sqrt{53} \] Now, we can find the six trigonometric functions: 1. **Sine**: \[ \sin \theta = \frac{y}{r} = \frac{-7}{\sqrt{53}} \quad \text{(Rationalized: } \sin \theta = \frac{-7\sqrt{53}}{53}\text{)} \] 2. **Cosine**: \[ \cos \theta = \frac{x}{r} = \frac{-2}{\sqrt{53}} \quad \text{(Rationalized: } \cos \theta = \frac{-2\sqrt{53}}{53}\text{)} \] 3. **Tangent**: \[ \tan \theta = \frac{y}{x} = \frac{-7}{-2} = \frac{7}{2} \] 4. **Cosecant**: \[ \csc \theta = \frac{1}{\sin \theta} = \frac{\sqrt{53}}{-7} \quad \text{(Rationalized: } \csc \theta = \frac{-\sqrt{53}}{7}\text{)} \] 5. **Secant**: \[ \sec \theta = \frac{1}{\cos \theta} = \frac{\sqrt{53}}{-2} \quad \text{(Rationalized: } \sec \theta = \frac{-\sqrt{53}}{2}\text{)} \] 6. **Cotangent**: \[ \cot \theta = \frac{1}{\tan \theta} = \frac{-2}{7} \] Thus, the final values for the six trigonometric functions are: \[ \sin \theta = \frac{-7\sqrt{53}}{53}, \quad \cos \theta = \frac{-2\sqrt{53}}{53}, \quad \tan \theta = \frac{7}{2}, \] \[ \csc \theta = \frac{-\sqrt{53}}{7}, \quad \sec \theta = \frac{-\sqrt{53}}{2}, \quad \cot \theta = \frac{-2}{7}. \]