Question
upstudy study bank question image url

Find the exact value of each of the six trigonometric functions of \( \theta \), if \( (-2,-7) \) is a point on the terminal side of angle \( \theta \). \( \sin \theta=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression. Rationalize all denominator

Ask by Page Knight. in the United States
Dec 03,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

\( \sin \theta = \frac{-7}{\sqrt{53}} \)

Solution

To find the exact values of the six trigonometric functions of angle \( \theta \) when the point \((-2, -7)\) lies on the terminal side of angle \( \theta \), we can use the coordinates of the point to determine the values of the trigonometric functions. Given that the point \((-2, -7)\) lies on the terminal side of angle \( \theta \), we can determine the values of the trigonometric functions as follows: 1. \( \sin \theta = \frac{y}{r} \) 2. \( \cos \theta = \frac{x}{r} \) 3. \( \tan \theta = \frac{y}{x} \) 4. \( \csc \theta = \frac{r}{y} \) 5. \( \sec \theta = \frac{r}{x} \) 6. \( \cot \theta = \frac{x}{y} \) where \( x = -2 \), \( y = -7 \), and \( r \) is the distance from the origin to the point \((-2, -7)\), which can be calculated using the Pythagorean theorem. Let's calculate the values of the trigonometric functions step by step: 1. Calculate \( r \): \[ r = \sqrt{x^2 + y^2} = \sqrt{(-2)^2 + (-7)^2} = \sqrt{4 + 49} = \sqrt{53} \] 2. Calculate \( \sin \theta \): \[ \sin \theta = \frac{y}{r} = \frac{-7}{\sqrt{53}} \] 3. Calculate \( \cos \theta \): \[ \cos \theta = \frac{x}{r} = \frac{-2}{\sqrt{53}} \] 4. Calculate \( \tan \theta \): \[ \tan \theta = \frac{y}{x} = \frac{-7}{-2} = \frac{7}{2} \] 5. Calculate \( \csc \theta \): \[ \csc \theta = \frac{r}{y} = \frac{\sqrt{53}}{-7} = -\frac{\sqrt{53}}{7} \] 6. Calculate \( \sec \theta \): \[ \sec \theta = \frac{r}{x} = \frac{\sqrt{53}}{-2} = -\frac{\sqrt{53}}{2} \] 7. Calculate \( \cot \theta \): \[ \cot \theta = \frac{x}{y} = \frac{-2}{-7} = \frac{2}{7} \] Therefore, the exact values of the six trigonometric functions of angle \( \theta \) are: - \( \sin \theta = \frac{-7}{\sqrt{53}} \) - \( \cos \theta = \frac{-2}{\sqrt{53}} \) - \( \tan \theta = \frac{7}{2} \) - \( \csc \theta = -\frac{\sqrt{53}}{7} \) - \( \sec \theta = -\frac{\sqrt{53}}{2} \) - \( \cot \theta = \frac{2}{7} \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the exact values of the six trigonometric functions of \( \theta \) given the point \( (-2, -7) \) on the terminal side of the angle, we first determine the radius \( r \) using the formula \( r = \sqrt{x^2 + y^2} \). Here, \( x = -2 \) and \( y = -7 \). Calculating \( r \): \[ r = \sqrt{(-2)^2 + (-7)^2} = \sqrt{4 + 49} = \sqrt{53} \] Now, we can find the six trigonometric functions: 1. **Sine**: \[ \sin \theta = \frac{y}{r} = \frac{-7}{\sqrt{53}} \quad \text{(Rationalized: } \sin \theta = \frac{-7\sqrt{53}}{53}\text{)} \] 2. **Cosine**: \[ \cos \theta = \frac{x}{r} = \frac{-2}{\sqrt{53}} \quad \text{(Rationalized: } \cos \theta = \frac{-2\sqrt{53}}{53}\text{)} \] 3. **Tangent**: \[ \tan \theta = \frac{y}{x} = \frac{-7}{-2} = \frac{7}{2} \] 4. **Cosecant**: \[ \csc \theta = \frac{1}{\sin \theta} = \frac{\sqrt{53}}{-7} \quad \text{(Rationalized: } \csc \theta = \frac{-\sqrt{53}}{7}\text{)} \] 5. **Secant**: \[ \sec \theta = \frac{1}{\cos \theta} = \frac{\sqrt{53}}{-2} \quad \text{(Rationalized: } \sec \theta = \frac{-\sqrt{53}}{2}\text{)} \] 6. **Cotangent**: \[ \cot \theta = \frac{1}{\tan \theta} = \frac{-2}{7} \] Thus, the final values for the six trigonometric functions are: \[ \sin \theta = \frac{-7\sqrt{53}}{53}, \quad \cos \theta = \frac{-2\sqrt{53}}{53}, \quad \tan \theta = \frac{7}{2}, \] \[ \csc \theta = \frac{-\sqrt{53}}{7}, \quad \sec \theta = \frac{-\sqrt{53}}{2}, \quad \cot \theta = \frac{-2}{7}. \]

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy