Pregunta
upstudy study bank question image url

Find the exact value of each of the six trigonometric functions of \( \theta \), if \( (-2,-7) \) is a point on the terminal side of angle \( \theta \). \( \sin \theta=\square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression. Rationalize all denominator

Ask by Page Knight. in the United States
Dec 03,2024

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

\( \sin \theta = \frac{-7}{\sqrt{53}} \)

Solución

To find the exact values of the six trigonometric functions of angle \( \theta \) when the point \((-2, -7)\) lies on the terminal side of angle \( \theta \), we can use the coordinates of the point to determine the values of the trigonometric functions. Given that the point \((-2, -7)\) lies on the terminal side of angle \( \theta \), we can determine the values of the trigonometric functions as follows: 1. \( \sin \theta = \frac{y}{r} \) 2. \( \cos \theta = \frac{x}{r} \) 3. \( \tan \theta = \frac{y}{x} \) 4. \( \csc \theta = \frac{r}{y} \) 5. \( \sec \theta = \frac{r}{x} \) 6. \( \cot \theta = \frac{x}{y} \) where \( x = -2 \), \( y = -7 \), and \( r \) is the distance from the origin to the point \((-2, -7)\), which can be calculated using the Pythagorean theorem. Let's calculate the values of the trigonometric functions step by step: 1. Calculate \( r \): \[ r = \sqrt{x^2 + y^2} = \sqrt{(-2)^2 + (-7)^2} = \sqrt{4 + 49} = \sqrt{53} \] 2. Calculate \( \sin \theta \): \[ \sin \theta = \frac{y}{r} = \frac{-7}{\sqrt{53}} \] 3. Calculate \( \cos \theta \): \[ \cos \theta = \frac{x}{r} = \frac{-2}{\sqrt{53}} \] 4. Calculate \( \tan \theta \): \[ \tan \theta = \frac{y}{x} = \frac{-7}{-2} = \frac{7}{2} \] 5. Calculate \( \csc \theta \): \[ \csc \theta = \frac{r}{y} = \frac{\sqrt{53}}{-7} = -\frac{\sqrt{53}}{7} \] 6. Calculate \( \sec \theta \): \[ \sec \theta = \frac{r}{x} = \frac{\sqrt{53}}{-2} = -\frac{\sqrt{53}}{2} \] 7. Calculate \( \cot \theta \): \[ \cot \theta = \frac{x}{y} = \frac{-2}{-7} = \frac{2}{7} \] Therefore, the exact values of the six trigonometric functions of angle \( \theta \) are: - \( \sin \theta = \frac{-7}{\sqrt{53}} \) - \( \cos \theta = \frac{-2}{\sqrt{53}} \) - \( \tan \theta = \frac{7}{2} \) - \( \csc \theta = -\frac{\sqrt{53}}{7} \) - \( \sec \theta = -\frac{\sqrt{53}}{2} \) - \( \cot \theta = \frac{2}{7} \)

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the exact values of the six trigonometric functions of \( \theta \) given the point \( (-2, -7) \) on the terminal side of the angle, we first determine the radius \( r \) using the formula \( r = \sqrt{x^2 + y^2} \). Here, \( x = -2 \) and \( y = -7 \). Calculating \( r \): \[ r = \sqrt{(-2)^2 + (-7)^2} = \sqrt{4 + 49} = \sqrt{53} \] Now, we can find the six trigonometric functions: 1. **Sine**: \[ \sin \theta = \frac{y}{r} = \frac{-7}{\sqrt{53}} \quad \text{(Rationalized: } \sin \theta = \frac{-7\sqrt{53}}{53}\text{)} \] 2. **Cosine**: \[ \cos \theta = \frac{x}{r} = \frac{-2}{\sqrt{53}} \quad \text{(Rationalized: } \cos \theta = \frac{-2\sqrt{53}}{53}\text{)} \] 3. **Tangent**: \[ \tan \theta = \frac{y}{x} = \frac{-7}{-2} = \frac{7}{2} \] 4. **Cosecant**: \[ \csc \theta = \frac{1}{\sin \theta} = \frac{\sqrt{53}}{-7} \quad \text{(Rationalized: } \csc \theta = \frac{-\sqrt{53}}{7}\text{)} \] 5. **Secant**: \[ \sec \theta = \frac{1}{\cos \theta} = \frac{\sqrt{53}}{-2} \quad \text{(Rationalized: } \sec \theta = \frac{-\sqrt{53}}{2}\text{)} \] 6. **Cotangent**: \[ \cot \theta = \frac{1}{\tan \theta} = \frac{-2}{7} \] Thus, the final values for the six trigonometric functions are: \[ \sin \theta = \frac{-7\sqrt{53}}{53}, \quad \cos \theta = \frac{-2\sqrt{53}}{53}, \quad \tan \theta = \frac{7}{2}, \] \[ \csc \theta = \frac{-\sqrt{53}}{7}, \quad \sec \theta = \frac{-\sqrt{53}}{2}, \quad \cot \theta = \frac{-2}{7}. \]

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad