Question
upstudy study bank question image url

Find the bases for \( \operatorname{Col} \operatorname{A} \) and \( \operatorname{Nul} \mathrm{A} \), and then state the dimension of these subspaces for the matrix \( A \) and an echelon form of \( A \) below. \[ A=\left[\begin{array}{rrrrr} 1 & 4 & -2 & -1 & 3 \\ 5 & 20 & 1 & -27 & 8 \\ 4 & 16 & -1 & -18 & 7 \\ -2 & -8 & 1 & 8 & -6 \end{array}\right] \sim\left[\begin{array}{rrrrr} 1 & 4 & -2 & -1 & 3 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] \] A basis for Col A is given by \( \square \) B. (Use a comma to separate vectors as needed.) The dimension of Col A is \( \square \) \( \square \). A basis for Nul A is given by \( \square \) B. (Use a comma to separate vectors as needed.) The dimension of Nul A is \( \square \) .

Ask by Wagner Wilson. in the United States
Mar 11,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

A basis for Col A is given by \(\begin{pmatrix} 1 \\ 5 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 8 \\ 7 \\ -6 \end{pmatrix}\). The dimension of Col A is \(3\). A basis for Nul A is given by \(\begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}\). The dimension of Nul A is \(2\).

Solution

The echelon form shows pivots in columns 1, 3, and 5. This means: 1. The basis for \(\operatorname{Col} A\) is given by the corresponding columns of the original matrix: \[ \begin{pmatrix} 1 \\ 5 \\ 4 \\ -2 \end{pmatrix}, \quad \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \quad \begin{pmatrix} 3 \\ 8 \\ 7 \\ -6 \end{pmatrix} \] The dimension of \(\operatorname{Col} A\) is \(3\). 2. To find the basis for \(\operatorname{Nul} A\), we solve \(A\mathbf{x}=\mathbf{0}\). Since the pivots are in columns 1, 3, and 5, let the free variables be: \[ x_2 = s \quad \text{and} \quad x_4 = t. \] From the echelon form we have the following equations: - **Row 1:** \[ x_1 + 4x_2 - 2x_3 - x_4 + 3x_5 = 0 \quad \Longrightarrow \quad x_1 = -4x_2 + 2x_3 + x_4 - 3x_5. \] - **Row 2:** \[ x_3 - 2x_4 = 0 \quad \Longrightarrow \quad x_3 = 2x_4 = 2t. \] - **Row 3:** \[ -5x_5 = 0 \quad \Longrightarrow \quad x_5 = 0. \] Substitute \(x_3 = 2t\) and \(x_5 = 0\) into the equation for \(x_1\): \[ x_1 = -4s + 2(2t) + t = -4s + 4t + t = -4s + 5t. \] So the general solution is: \[ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{pmatrix} = \begin{pmatrix} -4s+5t \\ s \\ 2t \\ t \\ 0 \end{pmatrix} = s\begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t\begin{pmatrix} 5 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}. \] Thus, a basis for \(\operatorname{Nul} A\) is: \[ \begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \begin{pmatrix} 5 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}. \] The dimension of \(\operatorname{Nul} A\) is \(2\). Summary: A basis for Col A is given by \(\begin{pmatrix} 1 \\ 5 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 8 \\ 7 \\ -6 \end{pmatrix}\). The dimension of Col A is \(3\). A basis for Nul A is given by \(\begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 5 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}\). The dimension of Nul A is \(2\).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To find a basis for the column space \(\operatorname{Col} A\) and the null space \(\operatorname{Nul} A\), let's start with the echelon form of matrix \(A\). The echelon form of \(A\) is: \[ \left[\begin{array}{rrrrr} 1 & 4 & -2 & -1 & 3 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] \] ### For \(\operatorname{Col} A\): The pivot columns in the echelon form correspond to the columns in the original matrix \(A\) that form a basis for the column space. The pivot columns are the first, third, and fifth columns, leading us to: A basis for \(\operatorname{Col} A\) is given by: \[ \begin{pmatrix} 1 \\ 5 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 8 \\ 7 \\ -6 \end{pmatrix} \] The dimension of \(\operatorname{Col} A\) is \(3\). ### For \(\operatorname{Nul} A\): To find the basis for the null space, we need to solve the equation \(A\mathbf{x} = \mathbf{0}\). From the given echelon form, we can express the solutions: Let \(x_2 = t\), \(x_4 = s\), and \(x_5 = 0\). Then from the second row, we can write \(x_3\) in terms of \(t\): \[ x_3 = 2s \] From the first row: \[ x_1 + 4t - 2(2s) - s + 3(0) = 0 \implies x_1 = -4t + 4s \] Thus, we can represent the solutions in vector form: \[ \mathbf{x} = t\begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s\begin{pmatrix} 4 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}. \] This yields the basis for the null space: \[ \begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}. \] The dimension of \(\operatorname{Nul} A\) is \(2\). Thus, the final answer is: A basis for Col A is given by: \(\begin{pmatrix} 1 \\ 5 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 8 \\ 7 \\ -6 \end{pmatrix}\). The dimension of Col A is \(3\). A basis for Nul A is given by: \(\begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}\). The dimension of Nul A is \(2\).

Related Questions

Latest Other Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy