Find the bases for \( \operatorname{Col} \operatorname{A} \) and \( \operatorname{Nul} \mathrm{A} \), and then state the dimension of these subspaces for the matrix \( A \) and an echelon form of \( A \) below. \[ A=\left[\begin{array}{rrrrr} 1 & 4 & -2 & -1 & 3 \\ 5 & 20 & 1 & -27 & 8 \\ 4 & 16 & -1 & -18 & 7 \\ -2 & -8 & 1 & 8 & -6 \end{array}\right] \sim\left[\begin{array}{rrrrr} 1 & 4 & -2 & -1 & 3 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] \] A basis for Col A is given by \( \square \) B. (Use a comma to separate vectors as needed.) The dimension of Col A is \( \square \) \( \square \). A basis for Nul A is given by \( \square \) B. (Use a comma to separate vectors as needed.) The dimension of Nul A is \( \square \) .
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


The Deep Dive
To find a basis for the column space \(\operatorname{Col} A\) and the null space \(\operatorname{Nul} A\), let's start with the echelon form of matrix \(A\). The echelon form of \(A\) is: \[ \left[\begin{array}{rrrrr} 1 & 4 & -2 & -1 & 3 \\ 0 & 0 & 1 & -2 & 0 \\ 0 & 0 & 0 & 0 & -5 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right] \] ### For \(\operatorname{Col} A\): The pivot columns in the echelon form correspond to the columns in the original matrix \(A\) that form a basis for the column space. The pivot columns are the first, third, and fifth columns, leading us to: A basis for \(\operatorname{Col} A\) is given by: \[ \begin{pmatrix} 1 \\ 5 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 8 \\ 7 \\ -6 \end{pmatrix} \] The dimension of \(\operatorname{Col} A\) is \(3\). ### For \(\operatorname{Nul} A\): To find the basis for the null space, we need to solve the equation \(A\mathbf{x} = \mathbf{0}\). From the given echelon form, we can express the solutions: Let \(x_2 = t\), \(x_4 = s\), and \(x_5 = 0\). Then from the second row, we can write \(x_3\) in terms of \(t\): \[ x_3 = 2s \] From the first row: \[ x_1 + 4t - 2(2s) - s + 3(0) = 0 \implies x_1 = -4t + 4s \] Thus, we can represent the solutions in vector form: \[ \mathbf{x} = t\begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + s\begin{pmatrix} 4 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}. \] This yields the basis for the null space: \[ \begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}. \] The dimension of \(\operatorname{Nul} A\) is \(2\). Thus, the final answer is: A basis for Col A is given by: \(\begin{pmatrix} 1 \\ 5 \\ 4 \\ -2 \end{pmatrix}, \begin{pmatrix} -2 \\ 1 \\ -1 \\ 1 \end{pmatrix}, \begin{pmatrix} 3 \\ 8 \\ 7 \\ -6 \end{pmatrix}\). The dimension of Col A is \(3\). A basis for Nul A is given by: \(\begin{pmatrix} -4 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 4 \\ 0 \\ 2 \\ 1 \\ 0 \end{pmatrix}\). The dimension of Nul A is \(2\).
