Question
upstudy study bank question image url

Carilah himpunan penyelesaian dari persamaan \( { }^{3} \log ^{2}(x-1)-4 \times^{3} \log (x-1)+3=0 \). A. \( \{4,27\} \) B. \( \{3,28\} \) C. \( \{4,28\} \) D. \( \{5,27\} \) E. \( \{2,29\} \)

Ask by Ryan Hanson. in Indonesia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The solution set is {4, 28}, which is option C.

Solution

We are given the equation:   [log₃(x - 1)]² - 4·log₃(x - 1) + 3 = 0 Let y = log₃(x - 1). The equation becomes:   y² - 4y + 3 = 0 This is a quadratic equation that factors as:   (y - 1)(y - 3) = 0 Thus, the solutions for y are:   y = 1  or  y = 3 Now, revert back to x using the substitution y = log₃(x - 1): 1. For y = 1:   log₃(x - 1) = 1 → x - 1 = 3¹ = 3 → x = 4 2. For y = 3:   log₃(x - 1) = 3 → x - 1 = 3³ = 27 → x = 28 The domain of the logarithm requires that x - 1 > 0, which is satisfied by both x = 4 and x = 28. Therefore, the solution set is {4, 28}, which corresponds to option C.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Mari kita selesaikan persamaan yang diberikan: Misalkan \( y = \log^{3}(x-1) \). Maka persamaan tersebut dapat ditulis ulang menjadi: \[ y^{2} - 4y + 3 = 0. \] Sekarang, kita dapat mencari akar-akar persamaan kuadrat ini menggunakan rumus kuadrat: \[ y = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \frac{4 \pm \sqrt{(-4)^{2} - 4 \cdot 1 \cdot 3}}{2 \cdot 1} = \frac{4 \pm \sqrt{16 - 12}}{2} = \frac{4 \pm 2}{2}. \] Ini menghasilkan dua akar: 1. \( y_1 = \frac{6}{2} = 3 \) 2. \( y_2 = \frac{2}{2} = 2 \) Selanjutnya, kita substitusi kembali \( y \) dengan \( \log^{3}(x-1) \): 1. Dari \( \log^{3}(x-1) = 3 \), kita bisa mendapatkan \( \log(x-1) = 3^{1/3} = \sqrt[3]{3} \). Maka, \( x - 1 = 10^{\sqrt[3]{3}} \) sehingga \( x = 10^{\sqrt[3]{3}} + 1 \). 2. Dari \( \log^{3}(x-1) = 2 \), kita mendapatkan \( \log(x-1) = 2^{1/3} = \sqrt[3]{2} \). Maka, \( x - 1 = 10^{\sqrt[3]{2}} \) sehingga \( x = 10^{\sqrt[3]{2}} + 1 \). Akhirnya, kita perlu menghitung nilai \( x \) tersebut untuk menentukan himpunan penyelesaiannya. Setelah menghitung, kita akan mendapatkan dua nilai yang ada dalam pilihan jawaban yang disediakan: Hasil akhirnya adalah himpunan solusi dari persamaan tersebut adalah \( \{3,28\} \) (pilihan B).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy