Answer
The calculations are as follows:
1. \( \frac{6 \times 1.07}{1.20} \approx 5.35 \)
2. \( \frac{6 \times 1.1449}{1.44} \approx 4.77041 \)
3. \( \frac{6 \times 1.225043}{1.728} \approx 4.253622 \)
4. \( \frac{6 \times 1.3107961}{2.0736} \approx 3.792813 \)
So, the results are approximately 5.35, 4.77, 4.25, and 3.79 respectively.
Solution
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(6\times 1.07^{1}\right)}{1.2^{1}}\)
- step1: Remove the parentheses:
\(\frac{6\times 1.07^{1}}{1.2^{1}}\)
- step2: Calculate:
\(\frac{6\times \frac{107}{100}}{1.2^{1}}\)
- step3: Calculate:
\(\frac{6\times \frac{107}{100}}{\frac{6}{5}}\)
- step4: Multiply the numbers:
\(\frac{\frac{321}{50}}{\frac{6}{5}}\)
- step5: Multiply by the reciprocal:
\(\frac{321}{50}\times \frac{5}{6}\)
- step6: Reduce the numbers:
\(\frac{107}{10}\times \frac{1}{2}\)
- step7: Multiply the fractions:
\(\frac{107}{10\times 2}\)
- step8: Multiply:
\(\frac{107}{20}\)
Calculate or simplify the expression \( (6 * 1.07 ^ 2) / 1.20 ^ 2 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(6\times 1.07^{2}\right)}{1.2^{2}}\)
- step1: Remove the parentheses:
\(\frac{6\times 1.07^{2}}{1.2^{2}}\)
- step2: Convert the expressions:
\(\frac{6\left(\frac{107}{100}\right)^{2}}{1.2^{2}}\)
- step3: Convert the expressions:
\(\frac{6\left(\frac{107}{100}\right)^{2}}{\left(\frac{6}{5}\right)^{2}}\)
- step4: Multiply the terms:
\(\frac{\frac{34347}{5000}}{\left(\frac{6}{5}\right)^{2}}\)
- step5: Evaluate the power:
\(\frac{\frac{34347}{5000}}{\frac{36}{25}}\)
- step6: Multiply by the reciprocal:
\(\frac{34347}{5000}\times \frac{25}{36}\)
- step7: Reduce the numbers:
\(\frac{11449}{200}\times \frac{1}{12}\)
- step8: Multiply the fractions:
\(\frac{11449}{200\times 12}\)
- step9: Multiply:
\(\frac{11449}{2400}\)
Calculate or simplify the expression \( (6 * 1.07 ^ 4) / 1.20 ^ 4 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(6\times 1.07^{4}\right)}{1.2^{4}}\)
- step1: Remove the parentheses:
\(\frac{6\times 1.07^{4}}{1.2^{4}}\)
- step2: Convert the expressions:
\(\frac{6\left(\frac{107}{100}\right)^{4}}{1.2^{4}}\)
- step3: Convert the expressions:
\(\frac{6\left(\frac{107}{100}\right)^{4}}{\left(\frac{6}{5}\right)^{4}}\)
- step4: Simplify:
\(\frac{6\times \frac{107^{4}}{100^{4}}}{\left(\frac{6}{5}\right)^{4}}\)
- step5: Evaluate the power:
\(\frac{6\times \frac{107^{4}}{100^{4}}}{\frac{1296}{625}}\)
- step6: Rewrite the expression:
\(\frac{\frac{6\times 107^{4}}{100^{4}}}{\frac{1296}{625}}\)
- step7: Multiply by the reciprocal:
\(\frac{6\times 107^{4}}{100^{4}}\times \frac{625}{1296}\)
- step8: Reduce the numbers:
\(\frac{107^{4}}{100^{4}}\times \frac{625}{216}\)
- step9: Rewrite the expression:
\(\frac{107^{4}}{25^{4}\times 4^{4}}\times \frac{625}{216}\)
- step10: Rewrite the expression:
\(\frac{107^{4}}{25^{4}\times 4^{4}}\times \frac{25^{2}}{216}\)
- step11: Reduce the numbers:
\(\frac{107^{4}}{25^{2}\times 4^{4}}\times \frac{1}{216}\)
- step12: Multiply the fractions:
\(\frac{107^{4}}{400^{2}\times 216}\)
- step13: Multiply:
\(\frac{107^{4}}{216\times 400^{2}}\)
Calculate or simplify the expression \( (6 * 1.07 ^ 3) / 1.20 ^ 3 \).
Calculate the value by following steps:
- step0: Calculate:
\(\frac{\left(6\times 1.07^{3}\right)}{1.2^{3}}\)
- step1: Remove the parentheses:
\(\frac{6\times 1.07^{3}}{1.2^{3}}\)
- step2: Convert the expressions:
\(\frac{6\left(\frac{107}{100}\right)^{3}}{1.2^{3}}\)
- step3: Convert the expressions:
\(\frac{6\left(\frac{107}{100}\right)^{3}}{\left(\frac{6}{5}\right)^{3}}\)
- step4: Simplify:
\(\frac{6\times \frac{107^{3}}{100^{3}}}{\left(\frac{6}{5}\right)^{3}}\)
- step5: Evaluate the power:
\(\frac{6\times \frac{107^{3}}{100^{3}}}{\frac{216}{125}}\)
- step6: Rewrite the expression:
\(\frac{\frac{6\times 107^{3}}{100^{3}}}{\frac{216}{125}}\)
- step7: Multiply by the reciprocal:
\(\frac{6\times 107^{3}}{100^{3}}\times \frac{125}{216}\)
- step8: Reduce the numbers:
\(\frac{107^{3}}{100^{3}}\times \frac{125}{36}\)
- step9: Rewrite the expression:
\(\frac{107^{3}}{25^{3}\times 4^{3}}\times \frac{125}{36}\)
- step10: Rewrite the expression:
\(\frac{107^{3}}{5^{6}\times 4^{3}}\times \frac{5^{3}}{36}\)
- step11: Reduce the numbers:
\(\frac{107^{3}}{5^{3}\times 4^{3}}\times \frac{1}{36}\)
- step12: Multiply the fractions:
\(\frac{107^{3}}{20^{3}\times 36}\)
- step13: Multiply:
\(\frac{107^{3}}{288000}\)
Let's calculate each expression step by step:
1. **First Expression:**
\[
\frac{6 \times 1.07^1}{1.20^1} = \frac{6 \times 1.07}{1.20} = \frac{6.42}{1.20} \approx 5.35
\]
2. **Second Expression:**
\[
\frac{6 \times 1.07^2}{1.20^2} = \frac{6 \times 1.1449}{1.44} = \frac{6.8694}{1.44} \approx 4.77041
\]
3. **Third Expression:**
\[
\frac{6 \times 1.07^3}{1.20^3} = \frac{6 \times 1.225043}{1.728} = \frac{7.350258}{1.728} \approx 4.253622
\]
4. **Fourth Expression:**
\[
\frac{6 \times 1.07^4}{1.20^4} = \frac{6 \times 1.3107961}{2.0736} = \frac{7.8647766}{2.0736} \approx 3.792813
\]
### Summary of Results:
- For \( \frac{6 \times 1.07^1}{1.20^1} \): **5.35**
- For \( \frac{6 \times 1.07^2}{1.20^2} \): **4.77041**
- For \( \frac{6 \times 1.07^3}{1.20^3} \): **4.253622**
- For \( \frac{6 \times 1.07^4}{1.20^4} \): **3.792813**
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution