Question
upstudy study bank question image url

\( \left. \begin{array} { l } { ( \$ 6 \times 1.07 ^ { 1 } ) / 1.20 ^ { 1 } = } \\ { ( \$ 6 \times 1.07 ^ { 2 } ) / 1.20 ^ { 2 } = } \\ { ( \$ 6 \times 1.07 ^ { 3 } ) / 1.20 ^ { 3 } = } \\ { ( \$ 6 \times 1.07 ^ { 4 } ) / 1.20 ^ { 4 } = } \end{array} \right. \)

Ask by Gibson Clarke. in the United States
Feb 26,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The calculations are as follows: 1. \( \frac{6 \times 1.07}{1.20} \approx 5.35 \) 2. \( \frac{6 \times 1.1449}{1.44} \approx 4.77041 \) 3. \( \frac{6 \times 1.225043}{1.728} \approx 4.253622 \) 4. \( \frac{6 \times 1.3107961}{2.0736} \approx 3.792813 \) So, the results are approximately 5.35, 4.77, 4.25, and 3.79 respectively.

Solution

Calculate the value by following steps: - step0: Calculate: \(\frac{\left(6\times 1.07^{1}\right)}{1.2^{1}}\) - step1: Remove the parentheses: \(\frac{6\times 1.07^{1}}{1.2^{1}}\) - step2: Calculate: \(\frac{6\times \frac{107}{100}}{1.2^{1}}\) - step3: Calculate: \(\frac{6\times \frac{107}{100}}{\frac{6}{5}}\) - step4: Multiply the numbers: \(\frac{\frac{321}{50}}{\frac{6}{5}}\) - step5: Multiply by the reciprocal: \(\frac{321}{50}\times \frac{5}{6}\) - step6: Reduce the numbers: \(\frac{107}{10}\times \frac{1}{2}\) - step7: Multiply the fractions: \(\frac{107}{10\times 2}\) - step8: Multiply: \(\frac{107}{20}\) Calculate or simplify the expression \( (6 * 1.07 ^ 2) / 1.20 ^ 2 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(6\times 1.07^{2}\right)}{1.2^{2}}\) - step1: Remove the parentheses: \(\frac{6\times 1.07^{2}}{1.2^{2}}\) - step2: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{2}}{1.2^{2}}\) - step3: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{2}}{\left(\frac{6}{5}\right)^{2}}\) - step4: Multiply the terms: \(\frac{\frac{34347}{5000}}{\left(\frac{6}{5}\right)^{2}}\) - step5: Evaluate the power: \(\frac{\frac{34347}{5000}}{\frac{36}{25}}\) - step6: Multiply by the reciprocal: \(\frac{34347}{5000}\times \frac{25}{36}\) - step7: Reduce the numbers: \(\frac{11449}{200}\times \frac{1}{12}\) - step8: Multiply the fractions: \(\frac{11449}{200\times 12}\) - step9: Multiply: \(\frac{11449}{2400}\) Calculate or simplify the expression \( (6 * 1.07 ^ 4) / 1.20 ^ 4 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(6\times 1.07^{4}\right)}{1.2^{4}}\) - step1: Remove the parentheses: \(\frac{6\times 1.07^{4}}{1.2^{4}}\) - step2: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{4}}{1.2^{4}}\) - step3: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{4}}{\left(\frac{6}{5}\right)^{4}}\) - step4: Simplify: \(\frac{6\times \frac{107^{4}}{100^{4}}}{\left(\frac{6}{5}\right)^{4}}\) - step5: Evaluate the power: \(\frac{6\times \frac{107^{4}}{100^{4}}}{\frac{1296}{625}}\) - step6: Rewrite the expression: \(\frac{\frac{6\times 107^{4}}{100^{4}}}{\frac{1296}{625}}\) - step7: Multiply by the reciprocal: \(\frac{6\times 107^{4}}{100^{4}}\times \frac{625}{1296}\) - step8: Reduce the numbers: \(\frac{107^{4}}{100^{4}}\times \frac{625}{216}\) - step9: Rewrite the expression: \(\frac{107^{4}}{25^{4}\times 4^{4}}\times \frac{625}{216}\) - step10: Rewrite the expression: \(\frac{107^{4}}{25^{4}\times 4^{4}}\times \frac{25^{2}}{216}\) - step11: Reduce the numbers: \(\frac{107^{4}}{25^{2}\times 4^{4}}\times \frac{1}{216}\) - step12: Multiply the fractions: \(\frac{107^{4}}{400^{2}\times 216}\) - step13: Multiply: \(\frac{107^{4}}{216\times 400^{2}}\) Calculate or simplify the expression \( (6 * 1.07 ^ 3) / 1.20 ^ 3 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(6\times 1.07^{3}\right)}{1.2^{3}}\) - step1: Remove the parentheses: \(\frac{6\times 1.07^{3}}{1.2^{3}}\) - step2: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{3}}{1.2^{3}}\) - step3: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{3}}{\left(\frac{6}{5}\right)^{3}}\) - step4: Simplify: \(\frac{6\times \frac{107^{3}}{100^{3}}}{\left(\frac{6}{5}\right)^{3}}\) - step5: Evaluate the power: \(\frac{6\times \frac{107^{3}}{100^{3}}}{\frac{216}{125}}\) - step6: Rewrite the expression: \(\frac{\frac{6\times 107^{3}}{100^{3}}}{\frac{216}{125}}\) - step7: Multiply by the reciprocal: \(\frac{6\times 107^{3}}{100^{3}}\times \frac{125}{216}\) - step8: Reduce the numbers: \(\frac{107^{3}}{100^{3}}\times \frac{125}{36}\) - step9: Rewrite the expression: \(\frac{107^{3}}{25^{3}\times 4^{3}}\times \frac{125}{36}\) - step10: Rewrite the expression: \(\frac{107^{3}}{5^{6}\times 4^{3}}\times \frac{5^{3}}{36}\) - step11: Reduce the numbers: \(\frac{107^{3}}{5^{3}\times 4^{3}}\times \frac{1}{36}\) - step12: Multiply the fractions: \(\frac{107^{3}}{20^{3}\times 36}\) - step13: Multiply: \(\frac{107^{3}}{288000}\) Let's calculate each expression step by step: 1. **First Expression:** \[ \frac{6 \times 1.07^1}{1.20^1} = \frac{6 \times 1.07}{1.20} = \frac{6.42}{1.20} \approx 5.35 \] 2. **Second Expression:** \[ \frac{6 \times 1.07^2}{1.20^2} = \frac{6 \times 1.1449}{1.44} = \frac{6.8694}{1.44} \approx 4.77041 \] 3. **Third Expression:** \[ \frac{6 \times 1.07^3}{1.20^3} = \frac{6 \times 1.225043}{1.728} = \frac{7.350258}{1.728} \approx 4.253622 \] 4. **Fourth Expression:** \[ \frac{6 \times 1.07^4}{1.20^4} = \frac{6 \times 1.3107961}{2.0736} = \frac{7.8647766}{2.0736} \approx 3.792813 \] ### Summary of Results: - For \( \frac{6 \times 1.07^1}{1.20^1} \): **5.35** - For \( \frac{6 \times 1.07^2}{1.20^2} \): **4.77041** - For \( \frac{6 \times 1.07^3}{1.20^3} \): **4.253622** - For \( \frac{6 \times 1.07^4}{1.20^4} \): **3.792813**

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

The expressions you listed are examples of calculating the present value of a series of cash flows that increase at a fixed percentage (7% in this case) while also factoring in a discount rate (20%). This is a common practice in financial analysis, especially for determining the value of future cash flows in today’s terms. By evaluating each year separately, you can see how the cash flows decrease in present value as time goes on when applying the larger discount rate. In real-world investment scenarios, knowing how to effectively discount future cash flows allows investors and businesses to make informed decisions. For instance, if you're considering investing in a project that promises increasing returns each year, you can use these calculations to determine whether the present value of those returns justifies the initial investment. The further into the future you project cash flows, the more significant the impact of your discount rate becomes, affecting profitability and investment strategy.

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy