Pregunta
upstudy study bank question image url

\( \left. \begin{array} { l } { ( \$ 6 \times 1.07 ^ { 1 } ) / 1.20 ^ { 1 } = } \\ { ( \$ 6 \times 1.07 ^ { 2 } ) / 1.20 ^ { 2 } = } \\ { ( \$ 6 \times 1.07 ^ { 3 } ) / 1.20 ^ { 3 } = } \\ { ( \$ 6 \times 1.07 ^ { 4 } ) / 1.20 ^ { 4 } = } \end{array} \right. \)

Ask by Gibson Clarke. in the United States
Feb 26,2025

Solución de inteligencia artificial de Upstudy

Respuesta verificada por el tutor

Responder

The calculations are as follows: 1. \( \frac{6 \times 1.07}{1.20} \approx 5.35 \) 2. \( \frac{6 \times 1.1449}{1.44} \approx 4.77041 \) 3. \( \frac{6 \times 1.225043}{1.728} \approx 4.253622 \) 4. \( \frac{6 \times 1.3107961}{2.0736} \approx 3.792813 \) So, the results are approximately 5.35, 4.77, 4.25, and 3.79 respectively.

Solución

Calculate the value by following steps: - step0: Calculate: \(\frac{\left(6\times 1.07^{1}\right)}{1.2^{1}}\) - step1: Remove the parentheses: \(\frac{6\times 1.07^{1}}{1.2^{1}}\) - step2: Calculate: \(\frac{6\times \frac{107}{100}}{1.2^{1}}\) - step3: Calculate: \(\frac{6\times \frac{107}{100}}{\frac{6}{5}}\) - step4: Multiply the numbers: \(\frac{\frac{321}{50}}{\frac{6}{5}}\) - step5: Multiply by the reciprocal: \(\frac{321}{50}\times \frac{5}{6}\) - step6: Reduce the numbers: \(\frac{107}{10}\times \frac{1}{2}\) - step7: Multiply the fractions: \(\frac{107}{10\times 2}\) - step8: Multiply: \(\frac{107}{20}\) Calculate or simplify the expression \( (6 * 1.07 ^ 2) / 1.20 ^ 2 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(6\times 1.07^{2}\right)}{1.2^{2}}\) - step1: Remove the parentheses: \(\frac{6\times 1.07^{2}}{1.2^{2}}\) - step2: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{2}}{1.2^{2}}\) - step3: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{2}}{\left(\frac{6}{5}\right)^{2}}\) - step4: Multiply the terms: \(\frac{\frac{34347}{5000}}{\left(\frac{6}{5}\right)^{2}}\) - step5: Evaluate the power: \(\frac{\frac{34347}{5000}}{\frac{36}{25}}\) - step6: Multiply by the reciprocal: \(\frac{34347}{5000}\times \frac{25}{36}\) - step7: Reduce the numbers: \(\frac{11449}{200}\times \frac{1}{12}\) - step8: Multiply the fractions: \(\frac{11449}{200\times 12}\) - step9: Multiply: \(\frac{11449}{2400}\) Calculate or simplify the expression \( (6 * 1.07 ^ 4) / 1.20 ^ 4 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(6\times 1.07^{4}\right)}{1.2^{4}}\) - step1: Remove the parentheses: \(\frac{6\times 1.07^{4}}{1.2^{4}}\) - step2: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{4}}{1.2^{4}}\) - step3: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{4}}{\left(\frac{6}{5}\right)^{4}}\) - step4: Simplify: \(\frac{6\times \frac{107^{4}}{100^{4}}}{\left(\frac{6}{5}\right)^{4}}\) - step5: Evaluate the power: \(\frac{6\times \frac{107^{4}}{100^{4}}}{\frac{1296}{625}}\) - step6: Rewrite the expression: \(\frac{\frac{6\times 107^{4}}{100^{4}}}{\frac{1296}{625}}\) - step7: Multiply by the reciprocal: \(\frac{6\times 107^{4}}{100^{4}}\times \frac{625}{1296}\) - step8: Reduce the numbers: \(\frac{107^{4}}{100^{4}}\times \frac{625}{216}\) - step9: Rewrite the expression: \(\frac{107^{4}}{25^{4}\times 4^{4}}\times \frac{625}{216}\) - step10: Rewrite the expression: \(\frac{107^{4}}{25^{4}\times 4^{4}}\times \frac{25^{2}}{216}\) - step11: Reduce the numbers: \(\frac{107^{4}}{25^{2}\times 4^{4}}\times \frac{1}{216}\) - step12: Multiply the fractions: \(\frac{107^{4}}{400^{2}\times 216}\) - step13: Multiply: \(\frac{107^{4}}{216\times 400^{2}}\) Calculate or simplify the expression \( (6 * 1.07 ^ 3) / 1.20 ^ 3 \). Calculate the value by following steps: - step0: Calculate: \(\frac{\left(6\times 1.07^{3}\right)}{1.2^{3}}\) - step1: Remove the parentheses: \(\frac{6\times 1.07^{3}}{1.2^{3}}\) - step2: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{3}}{1.2^{3}}\) - step3: Convert the expressions: \(\frac{6\left(\frac{107}{100}\right)^{3}}{\left(\frac{6}{5}\right)^{3}}\) - step4: Simplify: \(\frac{6\times \frac{107^{3}}{100^{3}}}{\left(\frac{6}{5}\right)^{3}}\) - step5: Evaluate the power: \(\frac{6\times \frac{107^{3}}{100^{3}}}{\frac{216}{125}}\) - step6: Rewrite the expression: \(\frac{\frac{6\times 107^{3}}{100^{3}}}{\frac{216}{125}}\) - step7: Multiply by the reciprocal: \(\frac{6\times 107^{3}}{100^{3}}\times \frac{125}{216}\) - step8: Reduce the numbers: \(\frac{107^{3}}{100^{3}}\times \frac{125}{36}\) - step9: Rewrite the expression: \(\frac{107^{3}}{25^{3}\times 4^{3}}\times \frac{125}{36}\) - step10: Rewrite the expression: \(\frac{107^{3}}{5^{6}\times 4^{3}}\times \frac{5^{3}}{36}\) - step11: Reduce the numbers: \(\frac{107^{3}}{5^{3}\times 4^{3}}\times \frac{1}{36}\) - step12: Multiply the fractions: \(\frac{107^{3}}{20^{3}\times 36}\) - step13: Multiply: \(\frac{107^{3}}{288000}\) Let's calculate each expression step by step: 1. **First Expression:** \[ \frac{6 \times 1.07^1}{1.20^1} = \frac{6 \times 1.07}{1.20} = \frac{6.42}{1.20} \approx 5.35 \] 2. **Second Expression:** \[ \frac{6 \times 1.07^2}{1.20^2} = \frac{6 \times 1.1449}{1.44} = \frac{6.8694}{1.44} \approx 4.77041 \] 3. **Third Expression:** \[ \frac{6 \times 1.07^3}{1.20^3} = \frac{6 \times 1.225043}{1.728} = \frac{7.350258}{1.728} \approx 4.253622 \] 4. **Fourth Expression:** \[ \frac{6 \times 1.07^4}{1.20^4} = \frac{6 \times 1.3107961}{2.0736} = \frac{7.8647766}{2.0736} \approx 3.792813 \] ### Summary of Results: - For \( \frac{6 \times 1.07^1}{1.20^1} \): **5.35** - For \( \frac{6 \times 1.07^2}{1.20^2} \): **4.77041** - For \( \frac{6 \times 1.07^3}{1.20^3} \): **4.253622** - For \( \frac{6 \times 1.07^4}{1.20^4} \): **3.792813**

Respondido por UpStudy AI y revisado por un tutor profesional

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The expressions you listed are examples of calculating the present value of a series of cash flows that increase at a fixed percentage (7% in this case) while also factoring in a discount rate (20%). This is a common practice in financial analysis, especially for determining the value of future cash flows in today’s terms. By evaluating each year separately, you can see how the cash flows decrease in present value as time goes on when applying the larger discount rate. In real-world investment scenarios, knowing how to effectively discount future cash flows allows investors and businesses to make informed decisions. For instance, if you're considering investing in a project that promises increasing returns each year, you can use these calculations to determine whether the present value of those returns justifies the initial investment. The further into the future you project cash flows, the more significant the impact of your discount rate becomes, affecting profitability and investment strategy.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad