Use the Product Rule to find the derivative \( \frac{d}{d x}\left[\left(\frac{1}{3} x^{3}+\frac{2}{5} x^{5}\right)\left(\frac{2}{x}-4 x^{2}\right)\right] \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To find the derivative of the given function using the Product Rule, we start by identifying our two functions. Let: \[ u = \frac{1}{3}x^{3} + \frac{2}{5}x^{5} \] \[ v = \frac{2}{x} - 4x^{2} \] The Product Rule states that: \[ \frac{d}{dx}[uv] = u'v + uv' \] Now, we need to calculate \(u'\) and \(v'\). 1. **Finding \(u'\)**: \[ u' = \frac{d}{dx}\left(\frac{1}{3}x^{3} + \frac{2}{5}x^{5}\right) = x^{2} + 2x^{4} \] 2. **Finding \(v'\)**: \[ v = \frac{2}{x} - 4x^{2} = 2x^{-1} - 4x^{2} \] \[ v' = \frac{d}{dx}\left(2x^{-1} - 4x^{2}\right) = -2x^{-2} - 8x = -\frac{2}{x^{2}} - 8x \] Now we can apply the Product Rule: \[ \frac{d}{dx}\left[\left(\frac{1}{3}x^{3} + \frac{2}{5}x^{5}\right)\left(\frac{2}{x} - 4x^{2}\right)\right] = u'v + uv' \] Substituting \(u\), \(u'\), \(v\), and \(v'\): \[ = \left(x^2 + 2x^4\right)\left(\frac{2}{x} - 4x^2\right) + \left(\frac{1}{3}x^3 + \frac{2}{5}x^5\right)\left(-\frac{2}{x^2} - 8x\right) \] To simplify: 1. **First Term**: \[ = (x^2 + 2x^4)\left(\frac{2}{x} - 4x^2\right) \] Distributing this, we have: \[ = x^2 \cdot \frac{2}{x} + x^2 \cdot (-4x^2) + 2x^4 \cdot \frac{2}{x} + 2x^4 \cdot (-4x^2) \] \[ = 2x + (-4x^4) + 4x^3 + (-8x^6) = 2x + 4x^3 - 4x^4 - 8x^6 \] 2. **Second Term**: \[ = \left(\frac{1}{3}x^3 + \frac{2}{5}x^5\right)\left(-\frac{2}{x^2} - 8x\right) \] Distributing this: \[ = \left(\frac{1}{3}x^3\right)\left(-\frac{2}{x^2}\right) + \left(\frac{1}{3}x^3\right)\left(-8x\right) + \left(\frac{2}{5}x^5\right)\left(-\frac{2}{x^2}\right) + \left(\frac{2}{5}x^5\right)(-8x) \] \[ = -\frac{2}{3}x + (-\frac{8}{3}x^4) - \frac{4}{5}x^3 - \frac{16}{5}x^6 \] Now, combine everything: Combining terms: - For \(x\): \(2x - \frac{2}{3}x = \frac{6}{3}x - \frac{2}{3}x = \frac{4}{3}x\) - For \(x^3\): \(4x^3 - \frac{4}{5}x^3 = \frac{20}{5}x^3 - \frac{4}{5}x^3 = \frac{16}{5}x^3\) - For \(x^4\): \(-4x^4 - \frac{8}{3}x^4\) can be