Use the following model for projectile motion to write the vector function that describes the path of the bomb at an altitude 40,500 feet, initial velocity of \( 660 \mathrm{~m} / \mathrm{h} \), and an angle of elevation \( \theta=0 \). \[ \begin{array}{l} r(t)=\left(v_{0} \cos \theta\right) d i+\left[h+\left(v_{0} \sin \theta\right) t-\frac{1}{2} g t^{2}\right] i \\ v_{0}=\text { Inibal velocity } \\ h=\text { initial helght } \\ 0=\text { angle of elevation } \\ g=\text { acceleration due to gravity }=32 \mathrm{ft} / \mathrm{sec} \end{array} \] Substitute the alven values accordingly and simpllify. Note: Remember to convert units of \( m / \mathrm{hr} \) to \( \mathrm{f} / \mathrm{sec} \).
Upstudy AI Solution
Answer
Solution

Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.

Answered by UpStudy AI and reviewed by a Professional Tutor
Extra Insights
To find the vector function that describes the path of the bomb, we start by converting the initial velocity from meters per hour to feet per second. Given: - Initial velocity \( v_0 = 660 \, \text{m/h} \) - Conversion factor: \( 1 \, \text{m} = 3.28084 \, \text{feet} \) - Since there are 3600 seconds in an hour: \[ v_0 = 660 \, \text{m/h} \times \frac{3.28084 \, \text{feet}}{1 \, \text{m}} \times \frac{1 \, \text{hour}}{3600 \, \text{seconds}} \approx 0.60786 \, \text{ft/s} \] Now substituting the values into the vector function: - Initial height \( h = 40,500 \, \text{ft} \) - Angle of elevation \( \theta = 0 \) degrees, which gives us: - \( \cos \theta = 1 \) - \( \sin \theta = 0 \) The formula simplifies to: \[ r(t) = \left(v_0 \cos \theta\right) t i + \left[h + \left(v_0 \sin \theta\right) t - \frac{1}{2} g t^{2}\right] j \] Substituting the values: \[ r(t) = \left(0.60786 \cdot 1\right) t i + \left[40,500 + \left(0.60786 \cdot 0\right)t - \frac{1}{2} \cdot 32 \cdot t^{2}\right] j \] \[ r(t) = 0.60786 t i + \left[40,500 - 16 t^{2}\right] j \] Thus, the vector function that describes the path of the bomb is: \[ r(t) \approx (0.60786 t) \, \mathbf{i} + (40,500 - 16 t^{2}) \, \mathbf{j} \]