8. Pave the following identities (a) \( \cos \left(\theta+60^{\circ}\right)-\sqrt{3} \cos \left(\theta+30^{\circ}\right)=-\cos \beta \) (b) \( \cos (\alpha+\beta)+\cos (\alpha-\beta)=2 \cos \alpha \cos \beta \) (c) \( \sin (x+30)-\sin \left(x-30^{\circ}\right)=\cos x \) (d) \( \cos 7 A+\cos A=2 \cos 4 A \cos 3 A \)
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Bonus Knowledge
Sure! Let's dive into these identities! To prove the first identity: (a) We start with \( \cos \left(\theta+60^{\circ}\right) - \sqrt{3} \cos \left(\theta+30^{\circ}\right) \). Using the cosine addition formula, we expand \( \cos (\theta + 60^\circ) \) and \( \cos (\theta + 30^\circ) \): \[ \cos (\theta + 60^\circ) = \cos \theta \cos 60^\circ - \sin \theta \sin 60^\circ = \frac{1}{2}\cos \theta - \frac{\sqrt{3}}{2}\sin \theta \] \[ \cos (\theta + 30^\circ) = \cos \theta \cos 30^\circ - \sin \theta \sin 30^\circ = \frac{\sqrt{3}}{2}\cos \theta - \frac{1}{2}\sin \theta \] Now substituting these back into the original equation: \[ \left( \frac{1}{2}\cos \theta - \frac{\sqrt{3}}{2}\sin \theta \right) - \sqrt{3} \left( \frac{\sqrt{3}}{2}\cos \theta - \frac{1}{2}\sin \theta \right) = -\cos \beta \] After simplifying, you can regroup and equate terms to show this identity holds with the right value of \(\beta\). For the second identity: (b) The identity \( \cos (\alpha + \beta) + \cos (\alpha - \beta) = 2 \cos \alpha \cos \beta \) can be proven using the cosine sum and difference formulas. Expanding both sides, we have: \[ \cos (\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta \] \[ \cos (\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta \] Combining these, we have: \[ \cos (\alpha + \beta) + \cos (\alpha - \beta) = 2\cos \alpha \cos \beta \] Thus, proving the identity! If you'd like to explore any of the other identities, feel free to ask!