Question
upstudy study bank question image url

b) \( \int \frac{\sqrt{x}-1}{1+\sqrt{x}} \)

Ask by Gross Li. in Spain
Dec 08,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

Para resolver la integral \( \int \frac{\sqrt{x}-1}{1+\sqrt{x}} \, dx \), sustituye \( u = \sqrt{x} \), luego integra y simplifica para obtener \( x - 4\sqrt{x} + 4\ln |1 + \sqrt{x}| + C \).

Solution

Para resolver la integral \( \int \frac{\sqrt{x}-1}{1+\sqrt{x}} \, dx \), podemos simplificar la expresión en el integrando. Primero, hagamos un cambio de variable. Sea \( u = \sqrt{x} \), entonces \( x = u^2 \) y \( dx = 2u \, du \). Sustituyendo en la integral, tenemos: \[ \int \frac{u-1}{1+u} \cdot 2u \, du = 2 \int \frac{u(u-1)}{1+u} \, du \] Ahora, simplificamos el integrando: \[ \frac{u(u-1)}{1+u} = \frac{u^2 - u}{1 + u} \] Podemos dividir el numerador: \[ \frac{u^2 - u}{1 + u} = \frac{u^2}{1 + u} - \frac{u}{1 + u} \] Ahora, podemos integrar cada término por separado: 1. Para \( \int \frac{u^2}{1 + u} \, du \), podemos usar la división de polinomios: \[ \frac{u^2}{1 + u} = u - 1 + \frac{1}{1 + u} \] Entonces, la integral se convierte en: \[ \int \left( u - 1 + \frac{1}{1 + u} \right) \, du = \int u \, du - \int 1 \, du + \int \frac{1}{1 + u} \, du \] Calculamos cada integral: - \( \int u \, du = \frac{u^2}{2} \) - \( \int 1 \, du = u \) - \( \int \frac{1}{1 + u} \, du = \ln |1 + u| \) Por lo tanto, tenemos: \[ \int \frac{u^2}{1 + u} \, du = \frac{u^2}{2} - u + \ln |1 + u| \] 2. Para el segundo término \( -\int \frac{u}{1 + u} \, du \), podemos usar la misma técnica de división: \[ \frac{u}{1 + u} = 1 - \frac{1}{1 + u} \] Entonces, la integral se convierte en: \[ -\int \left( 1 - \frac{1}{1 + u} \right) \, du = -\int 1 \, du + \int \frac{1}{1 + u} \, du = -u + \ln |1 + u| \] Sumando ambas integrales, tenemos: \[ \int \frac{u(u-1)}{1+u} \, du = \left( \frac{u^2}{2} - u + \ln |1 + u| \right) + \left( -u + \ln |1 + u| \right) \] Simplificando: \[ = \frac{u^2}{2} - 2u + 2\ln |1 + u| \] Finalmente, multiplicamos por 2 (debido al factor de 2 que sacamos al principio): \[ 2 \left( \frac{u^2}{2} - 2u + 2\ln |1 + u| \right) = u^2 - 4u + 4\ln |1 + u| \] Ahora, regresamos a la variable original \( u = \sqrt{x} \): \[ = (\sqrt{x})^2 - 4\sqrt{x} + 4\ln |1 + \sqrt{x}| = x - 4\sqrt{x} + 4\ln |1 + \sqrt{x}| \] Finalmente, no olvidemos añadir la constante de integración \( C \): \[ \int \frac{\sqrt{x}-1}{1+\sqrt{x}} \, dx = x - 4\sqrt{x} + 4\ln |1 + \sqrt{x}| + C \]

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

To tackle the integral \( \int \frac{\sqrt{x}-1}{1+\sqrt{x}} \, dx \), let's first simplify the integrand. You can rewrite the numerator by separating the terms: \[ \frac{\sqrt{x}-1}{1+\sqrt{x}} = \frac{\sqrt{x}}{1+\sqrt{x}} - \frac{1}{1+\sqrt{x}}. \] Now, split the integral into two parts: \[ \int \frac{\sqrt{x}}{1+\sqrt{x}} \, dx - \int \frac{1}{1+\sqrt{x}} \, dx. \] For the first part, you can use the substitution \( u = \sqrt{x} \), which makes \( du = \frac{1}{2\sqrt{x}} \, dx \), or \( dx = 2u \, du \). This gives us: \[ \int \frac{u}{1+u} \cdot 2u \, du = 2 \int \frac{u^2}{1+u} \, du. \] For the second part, the integral of \( \frac{1}{1+\sqrt{x}} \) can be handled with the same substitution. After evaluating, combine both results and don't forget to return to the variable \( x \). The final answer is: \[ \int \frac{\sqrt{x}-1}{1+\sqrt{x}} \, dx = (x - 2\sqrt{x} + 2\ln(1+\sqrt{x})) + C, \] where \( C \) is the constant of integration. Enjoy the dance of calculus!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy