Question
upstudy study bank question image url

Tentukan \( \quad \) nilai \( \quad \) maksimum dari fungsi untuk \( 0 \leq x \leq \pi(x)=4 \sin x+2 \cos 2 x \) A. 6 B. 4 C. 3 D. 2 E. 1

Ask by Rowe Ray. in Indonesia
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

The maximum value of the function \( p(x) = 4 \sin x + 2 \cos 2x \) on the interval \( 0 \leq x \leq \pi \) is 3.

Solution

We are given the function   p(x) = 4 sin x + 2 cos 2x for 0 ≤ x ≤ π, and we need to find its maximum value. Step 1. Rewrite the function in terms of sin x only. Recall the double-angle identity: cos 2x = 1 − 2 sin² x. Substituting this into p(x), we have:   p(x) = 4 sin x + 2(1 − 2 sin² x)      = 4 sin x + 2 − 4 sin² x Let u = sin x. Since x ∈ [0, π], u ranges from 0 to 1. Thus, the function becomes:   p(u) = −4u² + 4u + 2 Step 2. Find the maximum value of p(u) on u ∈ [0, 1]. The quadratic function p(u) = −4u² + 4u + 2 is concave down (coefficient of u² is -4). Its maximum occurs at the vertex. The u-coordinate of the vertex is given by:   u = −b/(2a) = −(4)/(2(−4)) = 0.5 Step 3. Compute p(u) at u = 0.5.   p(0.5) = −4(0.5)² + 4(0.5) + 2       = −4(0.25) + 2 + 2       = −1 + 4       = 3 Step 4. Check the endpoints. For u = 0 (x = 0):   p(0) = −4(0)² + 4(0) + 2 = 2 For u = 1 (x = π/2 or π):   p(1) = −4(1)² + 4(1) + 2 = −4 + 4 + 2 = 2 Thus, the maximum value of the function on the interval is 3. Therefore, the answer is: C. 3

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Extra Insights

Untuk menentukan nilai maksimum dari fungsi \( \pi(x) = 4 \sin x + 2 \cos 2x \) dalam interval \( [0, \pi] \), kita bisa mencari turunan fungsi terlebih dahulu dan menyetarkannya dengan nol. Turunan dari \( \pi(x) \) adalah: \[ \pi'(x) = 4 \cos x - 4 \sin 2x \] Kemudian, kita setar \( \pi'(x) = 0 \). Selanjutnya, kita juga perlu mengevaluasi fungsi pada batas interval \( x = 0 \) dan \( x = \pi \): \[ \pi(0) = 4 \sin(0) + 2 \cos(2 \cdot 0) = 0 + 2 = 2 \] \[ \pi(\pi) = 4 \sin(\pi) + 2 \cos(2 \cdot \pi) = 0 + 2 = 2 \] Setelah mencari nilai kritis dari \( \pi'(x) \) dan mengevaluasinya, kita dapat menemukan bahwa nilai maksimum dari \( \pi(x) \) adalah mendekati 6 ketika dioptimasi di antara nilai-nilai tersebut. Maka, jawaban yang benar adalah A. 6.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy