Answer
1. B) \( y=x^{2}|x|+x^{2} \)
2. D) \( \frac{4\pi}{5} \)
3. A) \( y=3 x^{2}-x^{4} \)
4. C) \( 6\pi \)
5. B) Нечетная
6. B) Нечетная
Solution
Function by following steps:
- step0: Determine if even, odd or neither:
\(y=3x^{2}-x^{4}\)
- step1: Use the appropriate notation:
\(f\left(x\right)=3x^{2}-x^{4}\)
- step2: Use substitution:
\(f\left(-x\right)=3\left(-x\right)^{2}-\left(-x\right)^{4}\)
- step3: Simplify:
\(f\left(-x\right)=3x^{2}-x^{4}\)
- step4: Use substitution:
\(f\left(-x\right)=f\left(x\right)\)
- step5: The function is an even function:
\(\textrm{Even}\)
Determine whether the function \( y=x^{3}-x|x| \) is even or odd
Function by following steps:
- step0: Determine if even, odd or neither:
\(y=x^{3}-x\left|x\right|\)
- step1: Use the appropriate notation:
\(f\left(x\right)=x^{3}-x\left|x\right|\)
- step2: Use substitution:
\(f\left(-x\right)=\left(-x\right)^{3}-\left(-x\left|-x\right|\right)\)
- step3: Simplify:
\(f\left(-x\right)=-x^{3}+x\left|x\right|\)
- step4: Use substitution:
\(f\left(-x\right)=-f\left(x\right)\)
- step5: The function is an odd function:
\(\textrm{Odd}\)
Determine whether the function \( y=x^{4}|x|+x^{3} \) is even or odd
Function by following steps:
- step0: Determine if even, odd or neither:
\(y=x^{4}\left|x\right|+x^{3}\)
- step1: Use the appropriate notation:
\(f\left(x\right)=x^{4}\left|x\right|+x^{3}\)
- step2: Use substitution:
\(f\left(-x\right)=\left(-x\right)^{4}\left|-x\right|+\left(-x\right)^{3}\)
- step3: Simplify:
\(f\left(-x\right)=x^{4}\left|x\right|-x^{3}\)
- step4: The function is neither even nor odd:
\(\textrm{Neither even nor odd}\)
Analyze the periodicity of the function \( y=\frac{1}{3}\sin(x) - 11 \)
Function by following steps:
- step0: Determine the period:
\(y=\frac{1}{3}\sin\left(x\right)-11\)
- step1: The period of the function is \(\frac{2\pi }{\left|1\right|}:\)
\(\frac{2\pi }{\left|1\right|}\)
- step2: Calculate:
\(\frac{2\pi }{1}\)
- step3: Divide the terms:
\(2\pi \)
Determine whether the function \( y=-x^{2}|x|+x^{5} \) is even or odd
Function by following steps:
- step0: Determine if even, odd or neither:
\(y=-x^{2}\left|x\right|+x^{5}\)
- step1: Use the appropriate notation:
\(f\left(x\right)=-x^{2}\left|x\right|+x^{5}\)
- step2: Use substitution:
\(f\left(-x\right)=-\left(-x\right)^{2}\left|-x\right|+\left(-x\right)^{5}\)
- step3: Simplify:
\(f\left(-x\right)=-x^{2}\left|x\right|-x^{5}\)
- step4: The function is neither even nor odd:
\(\textrm{Neither even nor odd}\)
Determine whether the function \( y=x^{2}|x|+x^{2} \) is even or odd
Function by following steps:
- step0: Determine if even, odd or neither:
\(y=x^{2}\left|x\right|+x^{2}\)
- step1: Use the appropriate notation:
\(f\left(x\right)=x^{2}\left|x\right|+x^{2}\)
- step2: Use substitution:
\(f\left(-x\right)=\left(-x\right)^{2}\left|-x\right|+\left(-x\right)^{2}\)
- step3: Simplify:
\(f\left(-x\right)=x^{2}\left|x\right|+x^{2}\)
- step4: Use substitution:
\(f\left(-x\right)=f\left(x\right)\)
- step5: The function is an even function:
\(\textrm{Even}\)
Determine whether the function \( y=\frac{4}{x} \) is even or odd
Function by following steps:
- step0: Determine if even, odd or neither:
\(y=\frac{4}{x}\)
- step1: Use the appropriate notation:
\(f\left(x\right)=\frac{4}{x}\)
- step2: Use substitution:
\(f\left(-x\right)=\frac{4}{-x}\)
- step3: Rewrite the fraction:
\(f\left(-x\right)=-\frac{4}{x}\)
- step4: Use substitution:
\(f\left(-x\right)=-f\left(x\right)\)
- step5: The function is an odd function:
\(\textrm{Odd}\)
Determine whether the function \( y=6 x^{5}-2 x^{4}+8 \) is even or odd
Function by following steps:
- step0: Determine if even, odd or neither:
\(y=6x^{5}-2x^{4}+8\)
- step1: Use the appropriate notation:
\(f\left(x\right)=6x^{5}-2x^{4}+8\)
- step2: Use substitution:
\(f\left(-x\right)=6\left(-x\right)^{5}-2\left(-x\right)^{4}+8\)
- step3: Simplify:
\(f\left(-x\right)=-6x^{5}-2x^{4}+8\)
- step4: The function is neither even nor odd:
\(\textrm{Neither even nor odd}\)
Determine whether the function \( y=\frac{x+4}{x-4} \) is even or odd
Function by following steps:
- step0: Determine if even, odd or neither:
\(y=\frac{x+4}{x-4}\)
- step1: The function is neither even nor odd:
\(\textrm{Neither even nor odd}\)
Determine whether the function \( y=\sqrt[5]{x+4}+\sqrt[5]{x-4} \) is even or odd
Function by following steps:
- step0: Determine if even, odd or neither:
\(y=\sqrt[5]{x+4}+\sqrt[5]{x-4}\)
- step1: Determine if even, odd or neither:
\(\textrm{Odd}\)
Давайте разберем каждую задачу по порядку.
### 1. Найдите четную функцию.
- A) \( y=-x^{2}|x|+x^{5} \) - **Не четная и не нечетная**
- B) \( y=x^{2}|x|+x^{2} \) - **Четная**
- C) \( y=x^{3}-x|x| \) - **Нечетная**
- D) \( y=x^{4}|x|+x^{3} \) - **Не четная и не нечетная**
**Ответ:** B) \( y=x^{2}|x|+x^{2} \)
### 2. Найдите наименьший положительный период функции \( f(x)=\cos \left(\frac{5 x}{2}-\frac{\pi}{6}\right)+1 \).
Период функции косинуса определяется как \( \frac{2\pi}{k} \), где \( k \) - коэффициент перед \( x \). В данном случае \( k = \frac{5}{2} \), следовательно, период будет:
\[
P = \frac{2\pi}{\frac{5}{2}} = \frac{4\pi}{5}
\]
**Ответ:** D) \( \frac{4\pi}{5} \)
### 3. Укажите четную функцию.
- A) \( y=3 x^{2}-x^{4} \) - **Четная**
- B) \( y=6 x^{5}-2 x^{4}+8 \) - **Не четная и не нечетная**
- C) \( y=\frac{4}{x} \) - **Не четная и не нечетная**
- D) \( y=\frac{x+4}{x-4} \) - **Не четная и не нечетная**
**Ответ:** A) \( y=3 x^{2}-x^{4} \)
### 4. Найдите наименьший период функции \( y=\left|\sin \frac{x}{3}\right|-11 \).
Период функции синуса равен \( 2\pi \). В данном случае период будет:
\[
P = 2\pi \cdot 3 = 6\pi
\]
**Ответ:** C) \( 6\pi \)
### 5. Определите, является ли функция \( y=\sqrt[5]{x+4}+\sqrt[5]{x-4} \) четной или нечетной.
Функция является нечетной, так как:
\[
f(-x) = \sqrt[5]{-x+4}+\sqrt[5]{-x-4} = -f(x)
\]
**Ответ:** B) Нечетная
### 6. Определите, является ли функция \( y=\sqrt[5]{x+14}+\sqrt[7]{-x+14} \) четной или нечетной.
Функция является нечетной, так как:
\[
f(-x) = \sqrt[5]{-x+14}+\sqrt[7]{x+14} = -f(x)
\]
**Ответ:** B) Нечетная
### Итоговые ответы:
1. B
2. D
3. A
4. C
5. B
6. B
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution