Question
upstudy study bank question image url

1. Жұп функцияны табыңыз. A) \( y=-x^{2}|x|+x^{5} \) B) \( y=x^{2}|x|+x^{2} \) C) \( y=x^{3}-x|x| \) D) \( y=x^{4}|x|+x^{3} \) 2. \( f(x)=\cos \left(\frac{5 x}{2}-\frac{\pi}{6}\right)+1 \) функциясының ең кіші оң периодын табыңыз. A) \( \frac{3 \pi}{2} \) B) \( \frac{3 \pi}{5} \) C) \( \frac{3 \pi}{7} \) D) \( \frac{4 \pi}{5} \) 3. Жұп функцияны көрсетіңіз. A) \( y=3 x^{2}-x^{4} \) B) \( y=6 x^{5}-2 x^{4}+8 \) C) \( y=\frac{4}{x} \) D) \( y=\frac{x+4}{x-4} \) 4. \( y=\left|\sin \frac{x}{3}\right|-11 \) функциясының ең кіші периодын табыңыз. A) \( 2 \pi \) B) \( \frac{2}{3} \pi \) C) \( 6 \pi \) D) \( 3 \pi \) 5. \( y=\sqrt[5]{x+4}+\sqrt[5]{x-4} \) функциясының жұп немесе тақ екенін анықтаңыз. A) Жпп B) Тақ C) Жұп та, тақта емес D) Анықтау мумкін емес 6. \( y=\sqrt[5]{x+14}+\sqrt[7]{-x+14} \) функциясының жұп немесе тақ екенін анықтаңыз. A) Жұп B) Тақ C) Жұп та, тақта емес D) Анықтау мумкін емес

Ask by Mcguire Ward. in Kazakhstan
Feb 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

1. B) \( y=x^{2}|x|+x^{2} \) 2. D) \( \frac{4\pi}{5} \) 3. A) \( y=3 x^{2}-x^{4} \) 4. C) \( 6\pi \) 5. B) Нечетная 6. B) Нечетная

Solution

Function by following steps: - step0: Determine if even, odd or neither: \(y=3x^{2}-x^{4}\) - step1: Use the appropriate notation: \(f\left(x\right)=3x^{2}-x^{4}\) - step2: Use substitution: \(f\left(-x\right)=3\left(-x\right)^{2}-\left(-x\right)^{4}\) - step3: Simplify: \(f\left(-x\right)=3x^{2}-x^{4}\) - step4: Use substitution: \(f\left(-x\right)=f\left(x\right)\) - step5: The function is an even function: \(\textrm{Even}\) Determine whether the function \( y=x^{3}-x|x| \) is even or odd Function by following steps: - step0: Determine if even, odd or neither: \(y=x^{3}-x\left|x\right|\) - step1: Use the appropriate notation: \(f\left(x\right)=x^{3}-x\left|x\right|\) - step2: Use substitution: \(f\left(-x\right)=\left(-x\right)^{3}-\left(-x\left|-x\right|\right)\) - step3: Simplify: \(f\left(-x\right)=-x^{3}+x\left|x\right|\) - step4: Use substitution: \(f\left(-x\right)=-f\left(x\right)\) - step5: The function is an odd function: \(\textrm{Odd}\) Determine whether the function \( y=x^{4}|x|+x^{3} \) is even or odd Function by following steps: - step0: Determine if even, odd or neither: \(y=x^{4}\left|x\right|+x^{3}\) - step1: Use the appropriate notation: \(f\left(x\right)=x^{4}\left|x\right|+x^{3}\) - step2: Use substitution: \(f\left(-x\right)=\left(-x\right)^{4}\left|-x\right|+\left(-x\right)^{3}\) - step3: Simplify: \(f\left(-x\right)=x^{4}\left|x\right|-x^{3}\) - step4: The function is neither even nor odd: \(\textrm{Neither even nor odd}\) Analyze the periodicity of the function \( y=\frac{1}{3}\sin(x) - 11 \) Function by following steps: - step0: Determine the period: \(y=\frac{1}{3}\sin\left(x\right)-11\) - step1: The period of the function is \(\frac{2\pi }{\left|1\right|}:\) \(\frac{2\pi }{\left|1\right|}\) - step2: Calculate: \(\frac{2\pi }{1}\) - step3: Divide the terms: \(2\pi \) Determine whether the function \( y=-x^{2}|x|+x^{5} \) is even or odd Function by following steps: - step0: Determine if even, odd or neither: \(y=-x^{2}\left|x\right|+x^{5}\) - step1: Use the appropriate notation: \(f\left(x\right)=-x^{2}\left|x\right|+x^{5}\) - step2: Use substitution: \(f\left(-x\right)=-\left(-x\right)^{2}\left|-x\right|+\left(-x\right)^{5}\) - step3: Simplify: \(f\left(-x\right)=-x^{2}\left|x\right|-x^{5}\) - step4: The function is neither even nor odd: \(\textrm{Neither even nor odd}\) Determine whether the function \( y=x^{2}|x|+x^{2} \) is even or odd Function by following steps: - step0: Determine if even, odd or neither: \(y=x^{2}\left|x\right|+x^{2}\) - step1: Use the appropriate notation: \(f\left(x\right)=x^{2}\left|x\right|+x^{2}\) - step2: Use substitution: \(f\left(-x\right)=\left(-x\right)^{2}\left|-x\right|+\left(-x\right)^{2}\) - step3: Simplify: \(f\left(-x\right)=x^{2}\left|x\right|+x^{2}\) - step4: Use substitution: \(f\left(-x\right)=f\left(x\right)\) - step5: The function is an even function: \(\textrm{Even}\) Determine whether the function \( y=\frac{4}{x} \) is even or odd Function by following steps: - step0: Determine if even, odd or neither: \(y=\frac{4}{x}\) - step1: Use the appropriate notation: \(f\left(x\right)=\frac{4}{x}\) - step2: Use substitution: \(f\left(-x\right)=\frac{4}{-x}\) - step3: Rewrite the fraction: \(f\left(-x\right)=-\frac{4}{x}\) - step4: Use substitution: \(f\left(-x\right)=-f\left(x\right)\) - step5: The function is an odd function: \(\textrm{Odd}\) Determine whether the function \( y=6 x^{5}-2 x^{4}+8 \) is even or odd Function by following steps: - step0: Determine if even, odd or neither: \(y=6x^{5}-2x^{4}+8\) - step1: Use the appropriate notation: \(f\left(x\right)=6x^{5}-2x^{4}+8\) - step2: Use substitution: \(f\left(-x\right)=6\left(-x\right)^{5}-2\left(-x\right)^{4}+8\) - step3: Simplify: \(f\left(-x\right)=-6x^{5}-2x^{4}+8\) - step4: The function is neither even nor odd: \(\textrm{Neither even nor odd}\) Determine whether the function \( y=\frac{x+4}{x-4} \) is even or odd Function by following steps: - step0: Determine if even, odd or neither: \(y=\frac{x+4}{x-4}\) - step1: The function is neither even nor odd: \(\textrm{Neither even nor odd}\) Determine whether the function \( y=\sqrt[5]{x+4}+\sqrt[5]{x-4} \) is even or odd Function by following steps: - step0: Determine if even, odd or neither: \(y=\sqrt[5]{x+4}+\sqrt[5]{x-4}\) - step1: Determine if even, odd or neither: \(\textrm{Odd}\) Давайте разберем каждую задачу по порядку. ### 1. Найдите четную функцию. - A) \( y=-x^{2}|x|+x^{5} \) - **Не четная и не нечетная** - B) \( y=x^{2}|x|+x^{2} \) - **Четная** - C) \( y=x^{3}-x|x| \) - **Нечетная** - D) \( y=x^{4}|x|+x^{3} \) - **Не четная и не нечетная** **Ответ:** B) \( y=x^{2}|x|+x^{2} \) ### 2. Найдите наименьший положительный период функции \( f(x)=\cos \left(\frac{5 x}{2}-\frac{\pi}{6}\right)+1 \). Период функции косинуса определяется как \( \frac{2\pi}{k} \), где \( k \) - коэффициент перед \( x \). В данном случае \( k = \frac{5}{2} \), следовательно, период будет: \[ P = \frac{2\pi}{\frac{5}{2}} = \frac{4\pi}{5} \] **Ответ:** D) \( \frac{4\pi}{5} \) ### 3. Укажите четную функцию. - A) \( y=3 x^{2}-x^{4} \) - **Четная** - B) \( y=6 x^{5}-2 x^{4}+8 \) - **Не четная и не нечетная** - C) \( y=\frac{4}{x} \) - **Не четная и не нечетная** - D) \( y=\frac{x+4}{x-4} \) - **Не четная и не нечетная** **Ответ:** A) \( y=3 x^{2}-x^{4} \) ### 4. Найдите наименьший период функции \( y=\left|\sin \frac{x}{3}\right|-11 \). Период функции синуса равен \( 2\pi \). В данном случае период будет: \[ P = 2\pi \cdot 3 = 6\pi \] **Ответ:** C) \( 6\pi \) ### 5. Определите, является ли функция \( y=\sqrt[5]{x+4}+\sqrt[5]{x-4} \) четной или нечетной. Функция является нечетной, так как: \[ f(-x) = \sqrt[5]{-x+4}+\sqrt[5]{-x-4} = -f(x) \] **Ответ:** B) Нечетная ### 6. Определите, является ли функция \( y=\sqrt[5]{x+14}+\sqrt[7]{-x+14} \) четной или нечетной. Функция является нечетной, так как: \[ f(-x) = \sqrt[5]{-x+14}+\sqrt[7]{x+14} = -f(x) \] **Ответ:** B) Нечетная ### Итоговые ответы: 1. B 2. D 3. A 4. C 5. B 6. B

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Bonus Knowledge

Жұп функцияларды анықтау үшін, функцияның \( f(-x) = f(x) \) шартын тексеру қажет. Мысалы, \( y=-x^{2}|x|+x^{5} \) функциясын тексерген кезде, \( f(-x) = -(-x)^{2} |-x| + (-x)^{5} = -x^{2}x + (-x^{5}) = -x^{3} \), яғни жұп емес. Ал \( y=x^{2}|x|+x^{2} \) функциясы, \( f(-x)=x^{2}|-x|+(-x)^{2} = x^{2}x+x^{2} = 2x^{2} \), демек бұл функция жұп. Енді \( f(x)=\cos \left(\frac{5 x}{2}-\frac{\pi}{6}\right)+1 \) функциясының периодын табу үшін, мұндағы косинусдың периодын ескеру керек. Стандартты косинус функциясы \( 2\pi \) периодына ие, сондықтан \( \frac{5 x}{2} \) үшін ең кіші период \( P = \frac{2 \cdot 2\pi}{5} = \frac{4\pi}{5} \) болады.

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy