Question
upstudy study bank question image url

Exercice 2 Résoudre suivantes: \( \begin{array}{l}\text { a) } \ln x=3 \\ \text { d) }[\ln x][\ln (x-1)]=0 \text { e } \\ \begin{array}{l}\text { f) } 2 \ln x=\ln (2 x-1) \\ \text { g) } \\ \text { h) } \ln \left(x^{2}-x\right)=\ln 2+\ln 3 \\ \text { j) } \ln (x+4)+\ln (2 x-2)- \\ \text { k) } \ln (x+3)+\ln (x+2)=1 \\ \text { I) }(\ln x)^{2}-2 \ln x+1=0 \text { m) } \\ \text { Exercice } 3 \text { Résoudre }\end{array}\end{array} \).

Ask by Ward Collins. in Senegal
Mar 19,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Voici les solutions pour chaque équation : a) \( x = e^3 \) d) \( x = 1 \) ou \( x = 2 \) f) \( x = 1 \) h) \( x = 3 \) ou \( x = -2 \) j) \( x = \frac{-3 + 3\sqrt{3}}{2} \) k) \( x = \frac{-5 + \sqrt{1 + 4e}}{2} \) l) \( x = e \)

Solution

Solve the equation by following steps: - step0: Solve for \(x\): \(2\ln{\left(x\right)}=\ln{\left(2x-1\right)}\) - step1: Find the domain: \(2\ln{\left(x\right)}=\ln{\left(2x-1\right)},x>\frac{1}{2}\) - step2: Move the expression to the left side: \(2\ln{\left(x\right)}-\ln{\left(2x-1\right)}=0\) - step3: Add the terms: \(\ln{\left(\frac{x^{2}}{2x-1}\right)}=0\) - step4: Convert the logarithm into exponential form: \(\frac{x^{2}}{2x-1}=e^{0}\) - step5: Evaluate the power: \(\frac{x^{2}}{2x-1}=1\) - step6: Cross multiply: \(x^{2}=2x-1\) - step7: Move the expression to the left side: \(x^{2}-\left(2x-1\right)=0\) - step8: Remove the parentheses: \(x^{2}-2x+1=0\) - step9: Factor the expression: \(\left(x-1\right)^{2}=0\) - step10: Simplify the expression: \(x-1=0\) - step11: Move the constant to the right side: \(x=0+1\) - step12: Remove 0: \(x=1\) - step13: Check if the solution is in the defined range: \(x=1,x>\frac{1}{2}\) - step14: Find the intersection: \(x=1\) Solve the equation \( (\ln x)^{2}-2 \ln x+1=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\left(\ln{\left(x\right)}\right)^{2}-2\ln{\left(x\right)}+1=0\) - step1: Find the domain: \(\left(\ln{\left(x\right)}\right)^{2}-2\ln{\left(x\right)}+1=0,x>0\) - step2: Solve using substitution: \(t^{2}-2t+1=0\) - step3: Factor the expression: \(\left(t-1\right)^{2}=0\) - step4: Simplify the expression: \(t-1=0\) - step5: Move the constant to the right side: \(t=0+1\) - step6: Remove 0: \(t=1\) - step7: Substitute back: \(\ln{\left(x\right)}=1\) - step8: Convert the logarithm into exponential form: \(x=e^{1}\) - step9: Evaluate the power: \(x=e\) - step10: Check if the solution is in the defined range: \(x=e,x>0\) - step11: Find the intersection: \(x=e\) Solve the equation \( \ln (x+4)+\ln (2 x-2)=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\ln{\left(x+4\right)}+\ln{\left(2x-2\right)}=0\) - step1: Find the domain: \(\ln{\left(x+4\right)}+\ln{\left(2x-2\right)}=0,x>1\) - step2: Transform the expression: \(\ln{\left(\left(x+4\right)\left(2x-2\right)\right)}=0\) - step3: Convert the logarithm into exponential form: \(\left(x+4\right)\left(2x-2\right)=e^{0}\) - step4: Evaluate the power: \(\left(x+4\right)\left(2x-2\right)=1\) - step5: Expand the expression: \(2x^{2}+6x-8=1\) - step6: Move the expression to the left side: \(2x^{2}+6x-8-1=0\) - step7: Subtract the numbers: \(2x^{2}+6x-9=0\) - step8: Solve using the quadratic formula: \(x=\frac{-6\pm \sqrt{6^{2}-4\times 2\left(-9\right)}}{2\times 2}\) - step9: Simplify the expression: \(x=\frac{-6\pm \sqrt{6^{2}-4\times 2\left(-9\right)}}{4}\) - step10: Simplify the expression: \(x=\frac{-6\pm \sqrt{108}}{4}\) - step11: Simplify the expression: \(x=\frac{-6\pm 6\sqrt{3}}{4}\) - step12: Separate into possible cases: \(\begin{align}&x=\frac{-6+6\sqrt{3}}{4}\\&x=\frac{-6-6\sqrt{3}}{4}\end{align}\) - step13: Simplify the expression: \(\begin{align}&x=\frac{-3+3\sqrt{3}}{2}\\&x=\frac{-6-6\sqrt{3}}{4}\end{align}\) - step14: Simplify the expression: \(\begin{align}&x=\frac{-3+3\sqrt{3}}{2}\\&x=-\frac{3+3\sqrt{3}}{2}\end{align}\) - step15: Check if the solution is in the defined range: \(\begin{align}&x=\frac{-3+3\sqrt{3}}{2}\\&x=-\frac{3+3\sqrt{3}}{2}\end{align},x>1\) - step16: Find the intersection: \(x=\frac{-3+3\sqrt{3}}{2}\) Solve the equation \( [\ln x][\ln (x-1)]=0 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\left(\ln{\left(x\right)}\right)\left(\ln{\left(x-1\right)}\right)=0\) - step1: Find the domain: \(\left(\ln{\left(x\right)}\right)\left(\ln{\left(x-1\right)}\right)=0,x>1\) - step2: Simplify: \(\ln{\left(x\right)}\times \ln{\left(x-1\right)}=0\) - step3: Separate into possible cases: \(\begin{align}&\ln{\left(x\right)}=0\\&\ln{\left(x-1\right)}=0\end{align}\) - step4: Solve the equation: \(\begin{align}&x=1\\&x=2\end{align}\) - step5: Check if the solution is in the defined range: \(\begin{align}&x=1\\&x=2\end{align},x>1\) - step6: Find the intersection: \(x=2\) Solve the equation \( \ln (x+3)+\ln (x+2)=1 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\ln{\left(x+3\right)}+\ln{\left(x+2\right)}=1\) - step1: Find the domain: \(\ln{\left(x+3\right)}+\ln{\left(x+2\right)}=1,x>-2\) - step2: Transform the expression: \(\ln{\left(\left(x+3\right)\left(x+2\right)\right)}=1\) - step3: Convert the logarithm into exponential form: \(\left(x+3\right)\left(x+2\right)=e^{1}\) - step4: Evaluate the power: \(\left(x+3\right)\left(x+2\right)=e\) - step5: Expand the expression: \(x^{2}+5x+6=e\) - step6: Move the expression to the left side: \(x^{2}+5x+6-e=0\) - step7: Solve using the quadratic formula: \(x=\frac{-5\pm \sqrt{5^{2}-4\left(6-e\right)}}{2}\) - step8: Simplify the expression: \(x=\frac{-5\pm \sqrt{1+4e}}{2}\) - step9: Separate into possible cases: \(\begin{align}&x=\frac{-5+\sqrt{1+4e}}{2}\\&x=\frac{-5-\sqrt{1+4e}}{2}\end{align}\) - step10: Rewrite the fraction: \(\begin{align}&x=\frac{-5+\sqrt{1+4e}}{2}\\&x=-\frac{5+\sqrt{1+4e}}{2}\end{align}\) - step11: Check if the solution is in the defined range: \(\begin{align}&x=\frac{-5+\sqrt{1+4e}}{2}\\&x=-\frac{5+\sqrt{1+4e}}{2}\end{align},x>-2\) - step12: Find the intersection: \(x=\frac{-5+\sqrt{1+4e}}{2}\) Solve the equation \( \ln \left(x^{2}-x\right)=\ln 2+\ln 3 \). Solve the equation by following steps: - step0: Solve for \(x\): \(\ln{\left(x^{2}-x\right)}=\ln{\left(2\right)}+\ln{\left(3\right)}\) - step1: Find the domain: \(\ln{\left(x^{2}-x\right)}=\ln{\left(2\right)}+\ln{\left(3\right)},x \in \left(-\infty,0\right)\cup \left(1,+\infty\right)\) - step2: Add the terms: \(\ln{\left(x^{2}-x\right)}=\ln{\left(6\right)}\) - step3: Evaluate the logarithm: \(x^{2}-x=6\) - step4: Move the expression to the left side: \(x^{2}-x-6=0\) - step5: Factor the expression: \(\left(x-3\right)\left(x+2\right)=0\) - step6: Separate into possible cases: \(\begin{align}&x-3=0\\&x+2=0\end{align}\) - step7: Solve the equation: \(\begin{align}&x=3\\&x=-2\end{align}\) - step8: Check if the solution is in the defined range: \(\begin{align}&x=3\\&x=-2\end{align},x \in \left(-\infty,0\right)\cup \left(1,+\infty\right)\) - step9: Find the intersection: \(\begin{align}&x=3\\&x=-2\end{align}\) - step10: Rewrite: \(x_{1}=-2,x_{2}=3\) Voici les solutions pour chaque équation : ### a) \( \ln x = 3 \) Pour résoudre cette équation, nous exponentions les deux côtés : \[ x = e^3 \] ### d) \( [\ln x][\ln (x-1)] = 0 \) Cette équation est satisfaite si l'un des facteurs est égal à zéro : 1. \( \ln x = 0 \) \(\Rightarrow x = 1\) 2. \( \ln (x-1) = 0 \) \(\Rightarrow x - 1 = 1 \Rightarrow x = 2\) Donc, les solutions sont : \[ x = 1 \quad \text{ou} \quad x = 2 \] ### f) \( 2 \ln x = \ln (2x - 1) \) En utilisant les propriétés des logarithmes, nous pouvons réécrire l'équation : \[ \ln x^2 = \ln (2x - 1) \Rightarrow x^2 = 2x - 1 \] En réarrangeant, nous avons : \[ x^2 - 2x + 1 = 0 \Rightarrow (x - 1)^2 = 0 \Rightarrow x = 1 \] ### h) \( \ln (x^2 - x) = \ln 2 + \ln 3 \) En utilisant les propriétés des logarithmes, nous avons : \[ \ln (x^2 - x) = \ln (6) \Rightarrow x^2 - x = 6 \] En réarrangeant, nous avons : \[ x^2 - x - 6 = 0 \] En factorisant, nous obtenons : \[ (x - 3)(x + 2) = 0 \Rightarrow x_1 = 3, \quad x_2 = -2 \] ### j) \( \ln (x + 4) + \ln (2x - 2) = 0 \) En utilisant les propriétés des logarithmes, nous avons : \[ \ln ((x + 4)(2x - 2)) = 0 \Rightarrow (x + 4)(2x - 2) = 1 \] En résolvant cette équation, nous obtenons : \[ x = \frac{-3 + 3\sqrt{3}}{2} \] ### k) \( \ln (x + 3) + \ln (x + 2) = 1 \) En utilisant les propriétés des logarithmes, nous avons : \[ \ln ((x + 3)(x + 2)) = 1 \Rightarrow (x + 3)(x + 2) = e \] En résolvant cette équation, nous obtenons : \[ x = \frac{-5 + \sqrt{1 + 4e}}{2} \] ### l) \( (\ln x)^2 - 2 \ln x + 1 = 0 \) Cette équation peut être factorisée : \[ (\ln x - 1)^2 = 0 \Rightarrow \ln x = 1 \Rightarrow x = e \] ### Résumé des solutions : - a) \( x = e^3 \) - d) \( x = 1 \) ou \( x = 2 \) - f) \( x = 1 \) - h) \( x = 3 \) ou \( x = -2 \) - j) \( x = \frac{-3 + 3\sqrt{3}}{2} \) - k) \( x = \frac{-5 + \sqrt{1 + 4e}}{2} \) - l) \( x = e \)

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Pour résoudre \( \ln x = 3 \), nous pouvons exponentier des deux côtés de l'équation. Cela nous donne \( x = e^3 \). En calculant, cela équivaut à environ 20.0855. Pour \( [\ln x][\ln (x-1)] = 0 \), soit \( \ln x = 0 \) ou \( \ln (x-1) = 0 \). Ainsi, \( x = 1 \) ou \( x = 2 \) (puisque \( e^0 = 1 \)). Les solutions sont donc \( x = 1 \) et \( x = 2 \) pour cette équation!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy