Pregunta
Exercice 2 Résoudre suivantes: \( \begin{array}{l}\text { a) } \ln x=3 \\ \text { d) }[\ln x][\ln (x-1)]=0 \text { e } \\ \begin{array}{l}\text { f) } 2 \ln x=\ln (2 x-1) \\ \text { g) } \\ \text { h) } \ln \left(x^{2}-x\right)=\ln 2+\ln 3 \\ \text { j) } \ln (x+4)+\ln (2 x-2)- \\ \text { k) } \ln (x+3)+\ln (x+2)=1 \\ \text { I) }(\ln x)^{2}-2 \ln x+1=0 \text { m) } \\ \text { Exercice } 3 \text { Résoudre }\end{array}\end{array} \).
Ask by Ward Collins. in Senegal
Mar 19,2025
Solución de inteligencia artificial de Upstudy
Respuesta verificada por el tutor
Responder
Voici les solutions pour chaque équation :
a) \( x = e^3 \)
d) \( x = 1 \) ou \( x = 2 \)
f) \( x = 1 \)
h) \( x = 3 \) ou \( x = -2 \)
j) \( x = \frac{-3 + 3\sqrt{3}}{2} \)
k) \( x = \frac{-5 + \sqrt{1 + 4e}}{2} \)
l) \( x = e \)
Solución
Solve the equation by following steps:
- step0: Solve for \(x\):
\(2\ln{\left(x\right)}=\ln{\left(2x-1\right)}\)
- step1: Find the domain:
\(2\ln{\left(x\right)}=\ln{\left(2x-1\right)},x>\frac{1}{2}\)
- step2: Move the expression to the left side:
\(2\ln{\left(x\right)}-\ln{\left(2x-1\right)}=0\)
- step3: Add the terms:
\(\ln{\left(\frac{x^{2}}{2x-1}\right)}=0\)
- step4: Convert the logarithm into exponential form:
\(\frac{x^{2}}{2x-1}=e^{0}\)
- step5: Evaluate the power:
\(\frac{x^{2}}{2x-1}=1\)
- step6: Cross multiply:
\(x^{2}=2x-1\)
- step7: Move the expression to the left side:
\(x^{2}-\left(2x-1\right)=0\)
- step8: Remove the parentheses:
\(x^{2}-2x+1=0\)
- step9: Factor the expression:
\(\left(x-1\right)^{2}=0\)
- step10: Simplify the expression:
\(x-1=0\)
- step11: Move the constant to the right side:
\(x=0+1\)
- step12: Remove 0:
\(x=1\)
- step13: Check if the solution is in the defined range:
\(x=1,x>\frac{1}{2}\)
- step14: Find the intersection:
\(x=1\)
Solve the equation \( (\ln x)^{2}-2 \ln x+1=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\left(\ln{\left(x\right)}\right)^{2}-2\ln{\left(x\right)}+1=0\)
- step1: Find the domain:
\(\left(\ln{\left(x\right)}\right)^{2}-2\ln{\left(x\right)}+1=0,x>0\)
- step2: Solve using substitution:
\(t^{2}-2t+1=0\)
- step3: Factor the expression:
\(\left(t-1\right)^{2}=0\)
- step4: Simplify the expression:
\(t-1=0\)
- step5: Move the constant to the right side:
\(t=0+1\)
- step6: Remove 0:
\(t=1\)
- step7: Substitute back:
\(\ln{\left(x\right)}=1\)
- step8: Convert the logarithm into exponential form:
\(x=e^{1}\)
- step9: Evaluate the power:
\(x=e\)
- step10: Check if the solution is in the defined range:
\(x=e,x>0\)
- step11: Find the intersection:
\(x=e\)
Solve the equation \( \ln (x+4)+\ln (2 x-2)=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\ln{\left(x+4\right)}+\ln{\left(2x-2\right)}=0\)
- step1: Find the domain:
\(\ln{\left(x+4\right)}+\ln{\left(2x-2\right)}=0,x>1\)
- step2: Transform the expression:
\(\ln{\left(\left(x+4\right)\left(2x-2\right)\right)}=0\)
- step3: Convert the logarithm into exponential form:
\(\left(x+4\right)\left(2x-2\right)=e^{0}\)
- step4: Evaluate the power:
\(\left(x+4\right)\left(2x-2\right)=1\)
- step5: Expand the expression:
\(2x^{2}+6x-8=1\)
- step6: Move the expression to the left side:
\(2x^{2}+6x-8-1=0\)
- step7: Subtract the numbers:
\(2x^{2}+6x-9=0\)
- step8: Solve using the quadratic formula:
\(x=\frac{-6\pm \sqrt{6^{2}-4\times 2\left(-9\right)}}{2\times 2}\)
- step9: Simplify the expression:
\(x=\frac{-6\pm \sqrt{6^{2}-4\times 2\left(-9\right)}}{4}\)
- step10: Simplify the expression:
\(x=\frac{-6\pm \sqrt{108}}{4}\)
- step11: Simplify the expression:
\(x=\frac{-6\pm 6\sqrt{3}}{4}\)
- step12: Separate into possible cases:
\(\begin{align}&x=\frac{-6+6\sqrt{3}}{4}\\&x=\frac{-6-6\sqrt{3}}{4}\end{align}\)
- step13: Simplify the expression:
\(\begin{align}&x=\frac{-3+3\sqrt{3}}{2}\\&x=\frac{-6-6\sqrt{3}}{4}\end{align}\)
- step14: Simplify the expression:
\(\begin{align}&x=\frac{-3+3\sqrt{3}}{2}\\&x=-\frac{3+3\sqrt{3}}{2}\end{align}\)
- step15: Check if the solution is in the defined range:
\(\begin{align}&x=\frac{-3+3\sqrt{3}}{2}\\&x=-\frac{3+3\sqrt{3}}{2}\end{align},x>1\)
- step16: Find the intersection:
\(x=\frac{-3+3\sqrt{3}}{2}\)
Solve the equation \( [\ln x][\ln (x-1)]=0 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\left(\ln{\left(x\right)}\right)\left(\ln{\left(x-1\right)}\right)=0\)
- step1: Find the domain:
\(\left(\ln{\left(x\right)}\right)\left(\ln{\left(x-1\right)}\right)=0,x>1\)
- step2: Simplify:
\(\ln{\left(x\right)}\times \ln{\left(x-1\right)}=0\)
- step3: Separate into possible cases:
\(\begin{align}&\ln{\left(x\right)}=0\\&\ln{\left(x-1\right)}=0\end{align}\)
- step4: Solve the equation:
\(\begin{align}&x=1\\&x=2\end{align}\)
- step5: Check if the solution is in the defined range:
\(\begin{align}&x=1\\&x=2\end{align},x>1\)
- step6: Find the intersection:
\(x=2\)
Solve the equation \( \ln (x+3)+\ln (x+2)=1 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\ln{\left(x+3\right)}+\ln{\left(x+2\right)}=1\)
- step1: Find the domain:
\(\ln{\left(x+3\right)}+\ln{\left(x+2\right)}=1,x>-2\)
- step2: Transform the expression:
\(\ln{\left(\left(x+3\right)\left(x+2\right)\right)}=1\)
- step3: Convert the logarithm into exponential form:
\(\left(x+3\right)\left(x+2\right)=e^{1}\)
- step4: Evaluate the power:
\(\left(x+3\right)\left(x+2\right)=e\)
- step5: Expand the expression:
\(x^{2}+5x+6=e\)
- step6: Move the expression to the left side:
\(x^{2}+5x+6-e=0\)
- step7: Solve using the quadratic formula:
\(x=\frac{-5\pm \sqrt{5^{2}-4\left(6-e\right)}}{2}\)
- step8: Simplify the expression:
\(x=\frac{-5\pm \sqrt{1+4e}}{2}\)
- step9: Separate into possible cases:
\(\begin{align}&x=\frac{-5+\sqrt{1+4e}}{2}\\&x=\frac{-5-\sqrt{1+4e}}{2}\end{align}\)
- step10: Rewrite the fraction:
\(\begin{align}&x=\frac{-5+\sqrt{1+4e}}{2}\\&x=-\frac{5+\sqrt{1+4e}}{2}\end{align}\)
- step11: Check if the solution is in the defined range:
\(\begin{align}&x=\frac{-5+\sqrt{1+4e}}{2}\\&x=-\frac{5+\sqrt{1+4e}}{2}\end{align},x>-2\)
- step12: Find the intersection:
\(x=\frac{-5+\sqrt{1+4e}}{2}\)
Solve the equation \( \ln \left(x^{2}-x\right)=\ln 2+\ln 3 \).
Solve the equation by following steps:
- step0: Solve for \(x\):
\(\ln{\left(x^{2}-x\right)}=\ln{\left(2\right)}+\ln{\left(3\right)}\)
- step1: Find the domain:
\(\ln{\left(x^{2}-x\right)}=\ln{\left(2\right)}+\ln{\left(3\right)},x \in \left(-\infty,0\right)\cup \left(1,+\infty\right)\)
- step2: Add the terms:
\(\ln{\left(x^{2}-x\right)}=\ln{\left(6\right)}\)
- step3: Evaluate the logarithm:
\(x^{2}-x=6\)
- step4: Move the expression to the left side:
\(x^{2}-x-6=0\)
- step5: Factor the expression:
\(\left(x-3\right)\left(x+2\right)=0\)
- step6: Separate into possible cases:
\(\begin{align}&x-3=0\\&x+2=0\end{align}\)
- step7: Solve the equation:
\(\begin{align}&x=3\\&x=-2\end{align}\)
- step8: Check if the solution is in the defined range:
\(\begin{align}&x=3\\&x=-2\end{align},x \in \left(-\infty,0\right)\cup \left(1,+\infty\right)\)
- step9: Find the intersection:
\(\begin{align}&x=3\\&x=-2\end{align}\)
- step10: Rewrite:
\(x_{1}=-2,x_{2}=3\)
Voici les solutions pour chaque équation :
### a) \( \ln x = 3 \)
Pour résoudre cette équation, nous exponentions les deux côtés :
\[
x = e^3
\]
### d) \( [\ln x][\ln (x-1)] = 0 \)
Cette équation est satisfaite si l'un des facteurs est égal à zéro :
1. \( \ln x = 0 \) \(\Rightarrow x = 1\)
2. \( \ln (x-1) = 0 \) \(\Rightarrow x - 1 = 1 \Rightarrow x = 2\)
Donc, les solutions sont :
\[
x = 1 \quad \text{ou} \quad x = 2
\]
### f) \( 2 \ln x = \ln (2x - 1) \)
En utilisant les propriétés des logarithmes, nous pouvons réécrire l'équation :
\[
\ln x^2 = \ln (2x - 1) \Rightarrow x^2 = 2x - 1
\]
En réarrangeant, nous avons :
\[
x^2 - 2x + 1 = 0 \Rightarrow (x - 1)^2 = 0 \Rightarrow x = 1
\]
### h) \( \ln (x^2 - x) = \ln 2 + \ln 3 \)
En utilisant les propriétés des logarithmes, nous avons :
\[
\ln (x^2 - x) = \ln (6) \Rightarrow x^2 - x = 6
\]
En réarrangeant, nous avons :
\[
x^2 - x - 6 = 0
\]
En factorisant, nous obtenons :
\[
(x - 3)(x + 2) = 0 \Rightarrow x_1 = 3, \quad x_2 = -2
\]
### j) \( \ln (x + 4) + \ln (2x - 2) = 0 \)
En utilisant les propriétés des logarithmes, nous avons :
\[
\ln ((x + 4)(2x - 2)) = 0 \Rightarrow (x + 4)(2x - 2) = 1
\]
En résolvant cette équation, nous obtenons :
\[
x = \frac{-3 + 3\sqrt{3}}{2}
\]
### k) \( \ln (x + 3) + \ln (x + 2) = 1 \)
En utilisant les propriétés des logarithmes, nous avons :
\[
\ln ((x + 3)(x + 2)) = 1 \Rightarrow (x + 3)(x + 2) = e
\]
En résolvant cette équation, nous obtenons :
\[
x = \frac{-5 + \sqrt{1 + 4e}}{2}
\]
### l) \( (\ln x)^2 - 2 \ln x + 1 = 0 \)
Cette équation peut être factorisée :
\[
(\ln x - 1)^2 = 0 \Rightarrow \ln x = 1 \Rightarrow x = e
\]
### Résumé des solutions :
- a) \( x = e^3 \)
- d) \( x = 1 \) ou \( x = 2 \)
- f) \( x = 1 \)
- h) \( x = 3 \) ou \( x = -2 \)
- j) \( x = \frac{-3 + 3\sqrt{3}}{2} \)
- k) \( x = \frac{-5 + \sqrt{1 + 4e}}{2} \)
- l) \( x = e \)
Respondido por UpStudy AI y revisado por un tutor profesional
Como
error msg


Beyond the Answer
Pour résoudre \( \ln x = 3 \), nous pouvons exponentier des deux côtés de l'équation. Cela nous donne \( x = e^3 \). En calculant, cela équivaut à environ 20.0855. Pour \( [\ln x][\ln (x-1)] = 0 \), soit \( \ln x = 0 \) ou \( \ln (x-1) = 0 \). Ainsi, \( x = 1 \) ou \( x = 2 \) (puisque \( e^0 = 1 \)). Les solutions sont donc \( x = 1 \) et \( x = 2 \) pour cette équation!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium