Question

\( f(x)=\sqrt{x+3} \)

Ask by Johnston Mullins. in Mexico
Feb 20,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La función es \( f(x) = \sqrt{x + 3} \). Su dominio es \( x \geq -3 \) y su rango es \( y \geq 0 \). La intersección con el eje y es en el punto \( (0, \sqrt{3}) \).

Solution

La función dada es \( f(x) = \sqrt{x + 3} \). ### Análisis de la función 1. **Dominio**: Para que la función esté definida, el radicando debe ser mayor o igual a cero. Por lo tanto, tenemos: \[ x + 3 \geq 0 \] Resolviendo esta desigualdad: \[ x \geq -3 \] Así que el dominio de \( f(x) \) es \( [-3, \infty) \). 2. **Rango**: Dado que la raíz cuadrada siempre produce valores no negativos, el rango de \( f(x) \) es: \[ [0, \infty) \] 3. **Intersección con el eje y**: Para encontrar la intersección con el eje y, evaluamos \( f(0) \): \[ f(0) = \sqrt{0 + 3} = \sqrt{3} \] Por lo tanto, la intersección con el eje y es \( (0, \sqrt{3}) \). 4. **Comportamiento de la función**: La función es creciente en su dominio, ya que la derivada de \( f(x) \) es positiva. Si necesitas más información o un análisis más detallado, házmelo saber.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

The Deep Dive

Did you know that functions like \( f(x) = \sqrt{x+3} \) first appeared in the study of roots and powers by mathematicians in ancient Greece? They were important in understanding geometric properties and solving equations that involve measurements. The square root function itself has roots in the practical need to address geometric problems, such as determining the length of the sides of a right triangle! To master the function \( f(x) = \sqrt{x+3} \), it's important to remember a common mistake: forgetting the domain! Since we can't take the square root of a negative number in the real number system, the expression inside the square root, \( x + 3 \), must be greater than or equal to zero. Therefore, the domain is \( x \geq -3 \). So, make sure to keep that in mind as you explore this function!

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy