Question
upstudy study bank question image url

\( 3 \quad \mathrm{Zij} a, b, c \in \mathbb{R}_{0}^{+} \). Vereenvoudig \( \sqrt[4]{\frac{a^{-7}\left(a^{2} b^{3} c^{4}\right)^{2}}{\left(a b c^{10}\right)^{3}\left(b^{3} c^{19}\right)^{-2}}} \)

Ask by Dunn Gonzalez. in Belgium
Jan 10,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Simplify the expression to \( \frac{c^{4}b^{2}\sqrt[4]{ba^{2}}}{a^{2}} \).

Solution

Calculate or simplify the expression \( \sqrt[4]{\frac{a^{-7}\left(a^{2} b^{3} c^{4}\right)^{2}}{\left(a b c^{10}\right)^{3}\left(b^{3} c^{19}\right)^{-2}}} \). Simplify the expression by following steps: - step0: Solution: \(\sqrt[4]{\frac{a^{-7}\left(a^{2}b^{3}c^{4}\right)^{2}}{\left(abc^{10}\right)^{3}\left(b^{3}c^{19}\right)^{-2}}}\) - step1: Multiply the terms: \(\sqrt[4]{\frac{\frac{b^{6}c^{8}}{a^{3}}}{\left(abc^{10}\right)^{3}\left(b^{3}c^{19}\right)^{-2}}}\) - step2: Multiply the terms: \(\sqrt[4]{\frac{\frac{b^{6}c^{8}}{a^{3}}}{\frac{a^{3}}{b^{3}c^{8}}}}\) - step3: Divide the terms: \(\sqrt[4]{\frac{b^{9}c^{16}}{a^{6}}}\) - step4: Use the properties of radicals: \(\frac{\sqrt[4]{b^{9}c^{16}}}{\sqrt[4]{a^{6}}}\) - step5: Simplify the expression: \(\frac{c^{4}b^{2}\sqrt[4]{b}}{a\sqrt{a}}\) - step6: Simplify: \(\frac{c^{4}b^{2}\sqrt[4]{ba^{2}}}{a^{2}}\) The simplified expression is \( \frac{c^{4}b^{2}\sqrt[4]{ba^{2}}}{a^{2}} \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

Laten we de uitdrukking stap voor stap vereenvoudigen. We hebben: \[ \sqrt[4]{\frac{a^{-7}\left(a^{2} b^{3} c^{4}\right)^{2}}{\left(a b c^{10}\right)^{3}\left(b^{3} c^{19}\right)^{-2}}} \] Eerst vereenvoudigen we de teller: \[ \left(a^{2} b^{3} c^{4}\right)^{2} = a^{4} b^{6} c^{8} \] Dus de teller wordt: \[ a^{-7} a^{4} b^{6} c^{8} = a^{-3} b^{6} c^{8} \] Nu de noemer: \[ (a b c^{10})^{3} = a^{3} b^{3} c^{30} \] en \[ (b^{3} c^{19})^{-2} = b^{-6} c^{-38} \] Hierdoor wordt de noemer: \[ a^{3} b^{3} c^{30} b^{-6} c^{-38} = a^{3} b^{3 - 6} c^{30 + 38} = a^{3} b^{-3} c^{68} \] Nu hebben we de gehele uitdrukking als: \[ \frac{a^{-3} b^{6} c^{8}}{a^{3} b^{-3} c^{68}} = \frac{a^{-3}}{a^{3}} \cdot \frac{b^{6}}{b^{-3}} \cdot \frac{c^{8}}{c^{68}} = a^{-6} b^{9} c^{-60} \] Vervolgens verlaten we de breuk: \[ = \frac{b^{9}}{a^{6} c^{60}} \] En nu nemen we de vierde wortel: \[ \sqrt[4]{\frac{b^{9}}{a^{6} c^{60}}} = \frac{b^{9/4}}{a^{6/4} c^{60/4}} = \frac{b^{9/4}}{a^{3/2} c^{15}} \] Dus de vereenvoudigde vorm van de oorspronkelijke uitdrukking is: \[ \frac{b^{9/4}}{a^{3/2} c^{15}} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy