\( 3 \quad \mathrm{Zij} a, b, c \in \mathbb{R}_{0}^{+} \). Vereenvoudig \( \sqrt[4]{\frac{a^{-7}\left(a^{2} b^{3} c^{4}\right)^{2}}{\left(a b c^{10}\right)^{3}\left(b^{3} c^{19}\right)^{-2}}} \)
Solución de inteligencia artificial de Upstudy
Responder
Solución
Respondido por UpStudy AI y revisado por un tutor profesional


Beyond the Answer
Laten we de uitdrukking stap voor stap vereenvoudigen. We hebben: \[ \sqrt[4]{\frac{a^{-7}\left(a^{2} b^{3} c^{4}\right)^{2}}{\left(a b c^{10}\right)^{3}\left(b^{3} c^{19}\right)^{-2}}} \] Eerst vereenvoudigen we de teller: \[ \left(a^{2} b^{3} c^{4}\right)^{2} = a^{4} b^{6} c^{8} \] Dus de teller wordt: \[ a^{-7} a^{4} b^{6} c^{8} = a^{-3} b^{6} c^{8} \] Nu de noemer: \[ (a b c^{10})^{3} = a^{3} b^{3} c^{30} \] en \[ (b^{3} c^{19})^{-2} = b^{-6} c^{-38} \] Hierdoor wordt de noemer: \[ a^{3} b^{3} c^{30} b^{-6} c^{-38} = a^{3} b^{3 - 6} c^{30 + 38} = a^{3} b^{-3} c^{68} \] Nu hebben we de gehele uitdrukking als: \[ \frac{a^{-3} b^{6} c^{8}}{a^{3} b^{-3} c^{68}} = \frac{a^{-3}}{a^{3}} \cdot \frac{b^{6}}{b^{-3}} \cdot \frac{c^{8}}{c^{68}} = a^{-6} b^{9} c^{-60} \] Vervolgens verlaten we de breuk: \[ = \frac{b^{9}}{a^{6} c^{60}} \] En nu nemen we de vierde wortel: \[ \sqrt[4]{\frac{b^{9}}{a^{6} c^{60}}} = \frac{b^{9/4}}{a^{6/4} c^{60/4}} = \frac{b^{9/4}}{a^{3/2} c^{15}} \] Dus de vereenvoudigde vorm van de oorspronkelijke uitdrukking is: \[ \frac{b^{9/4}}{a^{3/2} c^{15}} \]
