Answer
The function \( y = -2 e^{3x} + \sqrt{e} \) has the following features:
- **Domain:** All real numbers.
- **Range:** From negative infinity to \( \sqrt{e} \).
- **y-intercept:** \( \sqrt{e} - 2 \).
- **x-intercept:** \( \frac{1}{3} \ln\left(\frac{\sqrt{e}}{2}\right) \).
- **Asymptote:** Horizontal at \( y = \sqrt{e} \).
Solution
To analyze the function \( y = -2 e^{3x} + \sqrt{e} \), we can explore its features such as its domain, range, intercepts, and asymptotic behavior.
### Step 1: Determine the Domain
The domain of the function is the set of all possible values of \( x \) for which the function is defined. Since the exponential function \( e^{3x} \) is defined for all real numbers, the domain of \( y \) is:
\[
\text{Domain: } (-\infty, \infty)
\]
### Step 2: Determine the Range
To find the range, we need to analyze the behavior of the function as \( x \) approaches positive and negative infinity.
- As \( x \to -\infty \):
\[
e^{3x} \to 0 \implies y \to -2(0) + \sqrt{e} = \sqrt{e}
\]
- As \( x \to \infty \):
\[
e^{3x} \to \infty \implies y \to -2(\infty) + \sqrt{e} = -\infty
\]
Thus, the function decreases from \( \sqrt{e} \) to \( -\infty \). Therefore, the range is:
\[
\text{Range: } (-\infty, \sqrt{e}]
\]
### Step 3: Find the Intercepts
#### y-intercept:
To find the y-intercept, set \( x = 0 \):
\[
y(0) = -2 e^{3(0)} + \sqrt{e} = -2(1) + \sqrt{e} = \sqrt{e} - 2
\]
#### x-intercept:
To find the x-intercept, set \( y = 0 \):
\[
0 = -2 e^{3x} + \sqrt{e}
\]
\[
2 e^{3x} = \sqrt{e}
\]
\[
e^{3x} = \frac{\sqrt{e}}{2}
\]
Taking the natural logarithm of both sides:
\[
3x = \ln\left(\frac{\sqrt{e}}{2}\right)
\]
\[
x = \frac{1}{3} \ln\left(\frac{\sqrt{e}}{2}\right)
\]
### Step 4: Asymptotic Behavior
As \( x \to -\infty \), \( y \to \sqrt{e} \) (horizontal asymptote). As \( x \to \infty \), \( y \to -\infty \).
### Summary of Features
- **Domain:** \( (-\infty, \infty) \)
- **Range:** \( (-\infty, \sqrt{e}] \)
- **y-intercept:** \( \sqrt{e} - 2 \)
- **x-intercept:** \( \frac{1}{3} \ln\left(\frac{\sqrt{e}}{2}\right) \)
- **Horizontal asymptote:** \( y = \sqrt{e} \)
If you need further analysis or specific calculations, please let me know!
Answered by UpStudy AI and reviewed by a Professional Tutor

Explain

Simplify this solution