Question
upstudy study bank question image url

Mixed Exercises Simplify. \( \begin{array}{ll}\text { 39. } \sqrt[n]{16 y^{4} z^{12}} & \text { 40. } \sqrt[3]{-54 x^{6} y^{11}} \\ \text { 41. } \frac{x+1}{\sqrt{x-1}} & \text { 42. } \frac{x-2}{\sqrt{x^{2}-4}} \\ \text { 43. } 3 \sqrt{24 x}-2 \sqrt{54 x}+\sqrt{48} & \text { 44. } 5 \sqrt{18 c}+3 \sqrt{72 c}+6 \sqrt{76} \\ \text { 45. } 10 \sqrt{175 a}-4 \sqrt{112 a}-2 \sqrt{63 a} & \text { 46. } 7 \sqrt{204 y}+4 \sqrt{459 y}-8 \sqrt{140 y} \\ \text { 47. VOLUME McKenzie has a rectangular orism with dimensions } 20 \text { inches by } 35 \text { inches }\end{array} \)

Ask by Nunez Vaughan. in the United States
Feb 25,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

Here are the simplified results for each exercise: 39. \( \sqrt[n]{16 y^{4} z^{12}} = (2yz^{3})^{\frac{4}{n}} \) 40. \( \sqrt[3]{-54 x^{6} y^{11}} = -3x^{2}y^{3}\sqrt[3]{2y^{2}} \) 41. \( \frac{x+1}{\sqrt{x-1}} = \frac{x\sqrt{x-1} + \sqrt{x-1}}{x-1} \) 42. \( \frac{x-2}{\sqrt{x^{2}-4}} = \frac{\sqrt{x^{2}-4}}{x+2} \) 43. \( 3 \sqrt{24 x}-2 \sqrt{54 x}+\sqrt{48} = 4\sqrt{3} \) 44. \( 5 \sqrt{18 c}+3 \sqrt{72 c}+6 \sqrt{76} = 33\sqrt{2c}+12\sqrt{19} \) 45. \( 10 \sqrt{175 a}-4 \sqrt{112 a}-2 \sqrt{63 a} = 28\sqrt{7a} \) 46. \( 7 \sqrt{204 y}+4 \sqrt{459 y}-8 \sqrt{140 y} = 26\sqrt{51y}-16\sqrt{35y} \) If you have any further questions or need additional assistance, feel free to ask!

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x-2\right)}{\left(x^{2}-4\right)^{\frac{1}{2}}}\) - step1: Remove the parentheses: \(\frac{x-2}{\left(x^{2}-4\right)^{\frac{1}{2}}}\) - step2: Simplify: \(\frac{x-2}{\sqrt{x^{2}-4}}\) - step3: Calculate: \(\frac{\sqrt{x^{2}-4}}{x+2}\) Calculate or simplify the expression \( 5 * (18c)^(1/2) + 3 * (72c)^(1/2) + 6 * (76)^(1/2) \). Simplify the expression by following steps: - step0: Solution: \(5\left(18c\right)^{\frac{1}{2}}+3\left(72c\right)^{\frac{1}{2}}+6\times 76^{\frac{1}{2}}\) - step1: Multiply the terms: \(5\times 18^{\frac{1}{2}}c^{\frac{1}{2}}+3\left(72c\right)^{\frac{1}{2}}+6\times 76^{\frac{1}{2}}\) - step2: Multiply the terms: \(5\times 18^{\frac{1}{2}}c^{\frac{1}{2}}+3\times 72^{\frac{1}{2}}c^{\frac{1}{2}}+6\times 76^{\frac{1}{2}}\) - step3: Add the terms: \(33\times 2^{\frac{1}{2}}c^{\frac{1}{2}}+6\times 76^{\frac{1}{2}}\) - step4: Simplify: \(33\sqrt{2c}+6\times 76^{\frac{1}{2}}\) - step5: Simplify: \(33\sqrt{2c}+6\times 2\sqrt{19}\) - step6: Expand the expression: \(33\sqrt{2c}+12\sqrt{19}\) Calculate or simplify the expression \( (-54)^(1/3) * (x^(6/3)) * (y^(11/3)) \). Simplify the expression by following steps: - step0: Solution: \(\left(-54\right)^{\frac{1}{3}}x^{\frac{6}{3}}\left(y^{\frac{11}{3}}\right)\) - step1: Rewrite the expression: \(\left(-54\right)^{\frac{1}{3}}x^{\frac{6}{3}}y^{\frac{11}{3}}\) - step2: Divide the terms: \(\left(-54\right)^{\frac{1}{3}}x^{2}y^{\frac{11}{3}}\) - step3: Simplify: \(-54^{\frac{1}{3}}x^{2}y^{\frac{11}{3}}\) - step4: Simplify: \(-3\sqrt[3]{2}\times x^{2}y^{\frac{11}{3}}\) - step5: Calculate: \(-3x^{2}y^{3}\sqrt[3]{2y^{2}}\) Calculate or simplify the expression \( 7 * (204y)^(1/2) + 4 * (459y)^(1/2) - 8 * (140y)^(1/2) \). Simplify the expression by following steps: - step0: Solution: \(7\left(204y\right)^{\frac{1}{2}}+4\left(459y\right)^{\frac{1}{2}}-8\left(140y\right)^{\frac{1}{2}}\) - step1: Multiply the terms: \(7\times 204^{\frac{1}{2}}y^{\frac{1}{2}}+4\left(459y\right)^{\frac{1}{2}}-8\left(140y\right)^{\frac{1}{2}}\) - step2: Multiply the terms: \(7\times 204^{\frac{1}{2}}y^{\frac{1}{2}}+4\times 459^{\frac{1}{2}}y^{\frac{1}{2}}-8\left(140y\right)^{\frac{1}{2}}\) - step3: Multiply the terms: \(7\times 204^{\frac{1}{2}}y^{\frac{1}{2}}+4\times 459^{\frac{1}{2}}y^{\frac{1}{2}}-8\times 140^{\frac{1}{2}}y^{\frac{1}{2}}\) - step4: Simplify: \(14\sqrt{51y}+4\times 459^{\frac{1}{2}}y^{\frac{1}{2}}-8\times 140^{\frac{1}{2}}y^{\frac{1}{2}}\) - step5: Simplify: \(14\sqrt{51y}+12\sqrt{51y}-8\times 140^{\frac{1}{2}}y^{\frac{1}{2}}\) - step6: Simplify: \(14\sqrt{51y}+12\sqrt{51y}-16\sqrt{35y}\) - step7: Add the terms: \(26\sqrt{51y}-16\sqrt{35y}\) Calculate or simplify the expression \( (16)^(1/n) * (y^(4/n)) * (z^(12/n)) \). Simplify the expression by following steps: - step0: Solution: \(16^{\frac{1}{n}}y^{\frac{4}{n}}z^{\frac{12}{n}}\) - step1: Multiply the terms: \(\left(2y\right)^{\frac{4}{n}}z^{\frac{12}{n}}\) - step2: Multiply the exponents: \(\left(16y^{4}\right)^{\frac{1}{n}}\left(z^{12}\right)^{\frac{1}{n}}\) - step3: Calculate: \(\left(16y^{4}z^{12}\right)^{\frac{1}{n}}\) - step4: Calculate: \(\left(2yz^{3}\right)^{\frac{4}{n}}\) Calculate or simplify the expression \( 10 * (175a)^(1/2) - 4 * (112a)^(1/2) - 2 * (63a)^(1/2) \). Simplify the expression by following steps: - step0: Solution: \(10\left(175a\right)^{\frac{1}{2}}-4\left(112a\right)^{\frac{1}{2}}-2\left(63a\right)^{\frac{1}{2}}\) - step1: Multiply the terms: \(10\times 175^{\frac{1}{2}}a^{\frac{1}{2}}-4\left(112a\right)^{\frac{1}{2}}-2\left(63a\right)^{\frac{1}{2}}\) - step2: Multiply the terms: \(10\times 175^{\frac{1}{2}}a^{\frac{1}{2}}-4\times 112^{\frac{1}{2}}a^{\frac{1}{2}}-2\left(63a\right)^{\frac{1}{2}}\) - step3: Multiply the terms: \(10\times 175^{\frac{1}{2}}a^{\frac{1}{2}}-4\times 112^{\frac{1}{2}}a^{\frac{1}{2}}-2\times 63^{\frac{1}{2}}a^{\frac{1}{2}}\) - step4: Collect like terms: \(\left(10\times 175^{\frac{1}{2}}-4\times 112^{\frac{1}{2}}-2\times 63^{\frac{1}{2}}\right)a^{\frac{1}{2}}\) - step5: Subtract the numbers: \(28\times 7^{\frac{1}{2}}a^{\frac{1}{2}}\) - step6: Simplify: \(28\sqrt{7}\times a^{\frac{1}{2}}\) - step7: Calculate: \(28\sqrt{7a}\) Calculate or simplify the expression \( 3 * (24x)^(1/2) - 2 * (54x)^(1/2) + (48)^(1/2) \). Simplify the expression by following steps: - step0: Solution: \(3\left(24x\right)^{\frac{1}{2}}-2\left(54x\right)^{\frac{1}{2}}+48^{\frac{1}{2}}\) - step1: Multiply the terms: \(3\times 24^{\frac{1}{2}}x^{\frac{1}{2}}-2\left(54x\right)^{\frac{1}{2}}+48^{\frac{1}{2}}\) - step2: Multiply the terms: \(3\times 24^{\frac{1}{2}}x^{\frac{1}{2}}-2\times 54^{\frac{1}{2}}x^{\frac{1}{2}}+48^{\frac{1}{2}}\) - step3: Simplify: \(6\sqrt{6x}-2\times 54^{\frac{1}{2}}x^{\frac{1}{2}}+48^{\frac{1}{2}}\) - step4: Simplify: \(6\sqrt{6x}-6\sqrt{6x}+48^{\frac{1}{2}}\) - step5: Simplify: \(6\sqrt{6x}-6\sqrt{6x}+4\sqrt{3}\) - step6: Collect like terms: \(4\sqrt{3}\) Calculate or simplify the expression \( (x+1)/(x-1)^(1/2) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(x+1\right)}{\left(x-1\right)^{\frac{1}{2}}}\) - step1: Remove the parentheses: \(\frac{x+1}{\left(x-1\right)^{\frac{1}{2}}}\) - step2: Simplify: \(\frac{x+1}{\sqrt{x-1}}\) - step3: Calculate: \(\frac{x\sqrt{x-1}+\sqrt{x-1}}{x-1}\) Here are the simplified results for each of the exercises: **39.** Simplifying \( \sqrt[n]{16 y^{4} z^{12}} \): \[ \sqrt[n]{16 y^{4} z^{12}} = (2yz^{3})^{\frac{4}{n}} \] **40.** Simplifying \( \sqrt[3]{-54 x^{6} y^{11}} \): \[ \sqrt[3]{-54 x^{6} y^{11}} = -3x^{2}y^{3}\sqrt[3]{2y^{2}} \] **41.** Simplifying \( \frac{x+1}{\sqrt{x-1}} \): \[ \frac{x+1}{\sqrt{x-1}} = \frac{x\sqrt{x-1} + \sqrt{x-1}}{x-1} \] **42.** Simplifying \( \frac{x-2}{\sqrt{x^{2}-4}} \): \[ \frac{x-2}{\sqrt{x^{2}-4}} = \frac{\sqrt{x^{2}-4}}{x+2} \] **43.** Simplifying \( 3 \sqrt{24 x}-2 \sqrt{54 x}+\sqrt{48} \): \[ 3 \sqrt{24 x}-2 \sqrt{54 x}+\sqrt{48} = 4\sqrt{3} \] **44.** Simplifying \( 5 \sqrt{18 c}+3 \sqrt{72 c}+6 \sqrt{76} \): \[ 5 \sqrt{18 c}+3 \sqrt{72 c}+6 \sqrt{76} = 33\sqrt{2c}+12\sqrt{19} \] **45.** Simplifying \( 10 \sqrt{175 a}-4 \sqrt{112 a}-2 \sqrt{63 a} \): \[ 10 \sqrt{175 a}-4 \sqrt{112 a}-2 \sqrt{63 a} = 28\sqrt{7a} \] **46.** Simplifying \( 7 \sqrt{204 y}+4 \sqrt{459 y}-8 \sqrt{140 y} \): \[ 7 \sqrt{204 y}+4 \sqrt{459 y}-8 \sqrt{140 y} = 26\sqrt{51y}-16\sqrt{35y} \] If you have any further questions or need additional assistance, feel free to ask!

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Beyond the Answer

To tackle the simplification of expressions like \( \sqrt[n]{16 y^{4} z^{12}} \), remember that separating the components can often help. For example, break down the root: \( \sqrt[n]{16} \cdot \sqrt[n]{y^{4}} \cdot \sqrt[n]{z^{12}} \). Knowing that roots and exponents have a specific relationship can give clarity on how to express them in a more manageable form. When simplifying expressions involving radicals like \( 3 \sqrt{24 x}-2 \sqrt{54 x}+\sqrt{48} \), focus on simplifying inside the radicals first. Breaking down each term by factoring out perfect squares can significantly streamline the expression. For instance, \( \sqrt{24} \) simplifies to \( \sqrt{4 \cdot 6} = 2 \sqrt{6} \), which should be applied to each square root in your calculations for an easier result!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy