Responder
Here are the simplified results for each exercise:
39. \( \sqrt[n]{16 y^{4} z^{12}} = (2yz^{3})^{\frac{4}{n}} \)
40. \( \sqrt[3]{-54 x^{6} y^{11}} = -3x^{2}y^{3}\sqrt[3]{2y^{2}} \)
41. \( \frac{x+1}{\sqrt{x-1}} = \frac{x\sqrt{x-1} + \sqrt{x-1}}{x-1} \)
42. \( \frac{x-2}{\sqrt{x^{2}-4}} = \frac{\sqrt{x^{2}-4}}{x+2} \)
43. \( 3 \sqrt{24 x}-2 \sqrt{54 x}+\sqrt{48} = 4\sqrt{3} \)
44. \( 5 \sqrt{18 c}+3 \sqrt{72 c}+6 \sqrt{76} = 33\sqrt{2c}+12\sqrt{19} \)
45. \( 10 \sqrt{175 a}-4 \sqrt{112 a}-2 \sqrt{63 a} = 28\sqrt{7a} \)
46. \( 7 \sqrt{204 y}+4 \sqrt{459 y}-8 \sqrt{140 y} = 26\sqrt{51y}-16\sqrt{35y} \)
If you have any further questions or need additional assistance, feel free to ask!
Solución
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x-2\right)}{\left(x^{2}-4\right)^{\frac{1}{2}}}\)
- step1: Remove the parentheses:
\(\frac{x-2}{\left(x^{2}-4\right)^{\frac{1}{2}}}\)
- step2: Simplify:
\(\frac{x-2}{\sqrt{x^{2}-4}}\)
- step3: Calculate:
\(\frac{\sqrt{x^{2}-4}}{x+2}\)
Calculate or simplify the expression \( 5 * (18c)^(1/2) + 3 * (72c)^(1/2) + 6 * (76)^(1/2) \).
Simplify the expression by following steps:
- step0: Solution:
\(5\left(18c\right)^{\frac{1}{2}}+3\left(72c\right)^{\frac{1}{2}}+6\times 76^{\frac{1}{2}}\)
- step1: Multiply the terms:
\(5\times 18^{\frac{1}{2}}c^{\frac{1}{2}}+3\left(72c\right)^{\frac{1}{2}}+6\times 76^{\frac{1}{2}}\)
- step2: Multiply the terms:
\(5\times 18^{\frac{1}{2}}c^{\frac{1}{2}}+3\times 72^{\frac{1}{2}}c^{\frac{1}{2}}+6\times 76^{\frac{1}{2}}\)
- step3: Add the terms:
\(33\times 2^{\frac{1}{2}}c^{\frac{1}{2}}+6\times 76^{\frac{1}{2}}\)
- step4: Simplify:
\(33\sqrt{2c}+6\times 76^{\frac{1}{2}}\)
- step5: Simplify:
\(33\sqrt{2c}+6\times 2\sqrt{19}\)
- step6: Expand the expression:
\(33\sqrt{2c}+12\sqrt{19}\)
Calculate or simplify the expression \( (-54)^(1/3) * (x^(6/3)) * (y^(11/3)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\left(-54\right)^{\frac{1}{3}}x^{\frac{6}{3}}\left(y^{\frac{11}{3}}\right)\)
- step1: Rewrite the expression:
\(\left(-54\right)^{\frac{1}{3}}x^{\frac{6}{3}}y^{\frac{11}{3}}\)
- step2: Divide the terms:
\(\left(-54\right)^{\frac{1}{3}}x^{2}y^{\frac{11}{3}}\)
- step3: Simplify:
\(-54^{\frac{1}{3}}x^{2}y^{\frac{11}{3}}\)
- step4: Simplify:
\(-3\sqrt[3]{2}\times x^{2}y^{\frac{11}{3}}\)
- step5: Calculate:
\(-3x^{2}y^{3}\sqrt[3]{2y^{2}}\)
Calculate or simplify the expression \( 7 * (204y)^(1/2) + 4 * (459y)^(1/2) - 8 * (140y)^(1/2) \).
Simplify the expression by following steps:
- step0: Solution:
\(7\left(204y\right)^{\frac{1}{2}}+4\left(459y\right)^{\frac{1}{2}}-8\left(140y\right)^{\frac{1}{2}}\)
- step1: Multiply the terms:
\(7\times 204^{\frac{1}{2}}y^{\frac{1}{2}}+4\left(459y\right)^{\frac{1}{2}}-8\left(140y\right)^{\frac{1}{2}}\)
- step2: Multiply the terms:
\(7\times 204^{\frac{1}{2}}y^{\frac{1}{2}}+4\times 459^{\frac{1}{2}}y^{\frac{1}{2}}-8\left(140y\right)^{\frac{1}{2}}\)
- step3: Multiply the terms:
\(7\times 204^{\frac{1}{2}}y^{\frac{1}{2}}+4\times 459^{\frac{1}{2}}y^{\frac{1}{2}}-8\times 140^{\frac{1}{2}}y^{\frac{1}{2}}\)
- step4: Simplify:
\(14\sqrt{51y}+4\times 459^{\frac{1}{2}}y^{\frac{1}{2}}-8\times 140^{\frac{1}{2}}y^{\frac{1}{2}}\)
- step5: Simplify:
\(14\sqrt{51y}+12\sqrt{51y}-8\times 140^{\frac{1}{2}}y^{\frac{1}{2}}\)
- step6: Simplify:
\(14\sqrt{51y}+12\sqrt{51y}-16\sqrt{35y}\)
- step7: Add the terms:
\(26\sqrt{51y}-16\sqrt{35y}\)
Calculate or simplify the expression \( (16)^(1/n) * (y^(4/n)) * (z^(12/n)) \).
Simplify the expression by following steps:
- step0: Solution:
\(16^{\frac{1}{n}}y^{\frac{4}{n}}z^{\frac{12}{n}}\)
- step1: Multiply the terms:
\(\left(2y\right)^{\frac{4}{n}}z^{\frac{12}{n}}\)
- step2: Multiply the exponents:
\(\left(16y^{4}\right)^{\frac{1}{n}}\left(z^{12}\right)^{\frac{1}{n}}\)
- step3: Calculate:
\(\left(16y^{4}z^{12}\right)^{\frac{1}{n}}\)
- step4: Calculate:
\(\left(2yz^{3}\right)^{\frac{4}{n}}\)
Calculate or simplify the expression \( 10 * (175a)^(1/2) - 4 * (112a)^(1/2) - 2 * (63a)^(1/2) \).
Simplify the expression by following steps:
- step0: Solution:
\(10\left(175a\right)^{\frac{1}{2}}-4\left(112a\right)^{\frac{1}{2}}-2\left(63a\right)^{\frac{1}{2}}\)
- step1: Multiply the terms:
\(10\times 175^{\frac{1}{2}}a^{\frac{1}{2}}-4\left(112a\right)^{\frac{1}{2}}-2\left(63a\right)^{\frac{1}{2}}\)
- step2: Multiply the terms:
\(10\times 175^{\frac{1}{2}}a^{\frac{1}{2}}-4\times 112^{\frac{1}{2}}a^{\frac{1}{2}}-2\left(63a\right)^{\frac{1}{2}}\)
- step3: Multiply the terms:
\(10\times 175^{\frac{1}{2}}a^{\frac{1}{2}}-4\times 112^{\frac{1}{2}}a^{\frac{1}{2}}-2\times 63^{\frac{1}{2}}a^{\frac{1}{2}}\)
- step4: Collect like terms:
\(\left(10\times 175^{\frac{1}{2}}-4\times 112^{\frac{1}{2}}-2\times 63^{\frac{1}{2}}\right)a^{\frac{1}{2}}\)
- step5: Subtract the numbers:
\(28\times 7^{\frac{1}{2}}a^{\frac{1}{2}}\)
- step6: Simplify:
\(28\sqrt{7}\times a^{\frac{1}{2}}\)
- step7: Calculate:
\(28\sqrt{7a}\)
Calculate or simplify the expression \( 3 * (24x)^(1/2) - 2 * (54x)^(1/2) + (48)^(1/2) \).
Simplify the expression by following steps:
- step0: Solution:
\(3\left(24x\right)^{\frac{1}{2}}-2\left(54x\right)^{\frac{1}{2}}+48^{\frac{1}{2}}\)
- step1: Multiply the terms:
\(3\times 24^{\frac{1}{2}}x^{\frac{1}{2}}-2\left(54x\right)^{\frac{1}{2}}+48^{\frac{1}{2}}\)
- step2: Multiply the terms:
\(3\times 24^{\frac{1}{2}}x^{\frac{1}{2}}-2\times 54^{\frac{1}{2}}x^{\frac{1}{2}}+48^{\frac{1}{2}}\)
- step3: Simplify:
\(6\sqrt{6x}-2\times 54^{\frac{1}{2}}x^{\frac{1}{2}}+48^{\frac{1}{2}}\)
- step4: Simplify:
\(6\sqrt{6x}-6\sqrt{6x}+48^{\frac{1}{2}}\)
- step5: Simplify:
\(6\sqrt{6x}-6\sqrt{6x}+4\sqrt{3}\)
- step6: Collect like terms:
\(4\sqrt{3}\)
Calculate or simplify the expression \( (x+1)/(x-1)^(1/2) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(x+1\right)}{\left(x-1\right)^{\frac{1}{2}}}\)
- step1: Remove the parentheses:
\(\frac{x+1}{\left(x-1\right)^{\frac{1}{2}}}\)
- step2: Simplify:
\(\frac{x+1}{\sqrt{x-1}}\)
- step3: Calculate:
\(\frac{x\sqrt{x-1}+\sqrt{x-1}}{x-1}\)
Here are the simplified results for each of the exercises:
**39.** Simplifying \( \sqrt[n]{16 y^{4} z^{12}} \):
\[
\sqrt[n]{16 y^{4} z^{12}} = (2yz^{3})^{\frac{4}{n}}
\]
**40.** Simplifying \( \sqrt[3]{-54 x^{6} y^{11}} \):
\[
\sqrt[3]{-54 x^{6} y^{11}} = -3x^{2}y^{3}\sqrt[3]{2y^{2}}
\]
**41.** Simplifying \( \frac{x+1}{\sqrt{x-1}} \):
\[
\frac{x+1}{\sqrt{x-1}} = \frac{x\sqrt{x-1} + \sqrt{x-1}}{x-1}
\]
**42.** Simplifying \( \frac{x-2}{\sqrt{x^{2}-4}} \):
\[
\frac{x-2}{\sqrt{x^{2}-4}} = \frac{\sqrt{x^{2}-4}}{x+2}
\]
**43.** Simplifying \( 3 \sqrt{24 x}-2 \sqrt{54 x}+\sqrt{48} \):
\[
3 \sqrt{24 x}-2 \sqrt{54 x}+\sqrt{48} = 4\sqrt{3}
\]
**44.** Simplifying \( 5 \sqrt{18 c}+3 \sqrt{72 c}+6 \sqrt{76} \):
\[
5 \sqrt{18 c}+3 \sqrt{72 c}+6 \sqrt{76} = 33\sqrt{2c}+12\sqrt{19}
\]
**45.** Simplifying \( 10 \sqrt{175 a}-4 \sqrt{112 a}-2 \sqrt{63 a} \):
\[
10 \sqrt{175 a}-4 \sqrt{112 a}-2 \sqrt{63 a} = 28\sqrt{7a}
\]
**46.** Simplifying \( 7 \sqrt{204 y}+4 \sqrt{459 y}-8 \sqrt{140 y} \):
\[
7 \sqrt{204 y}+4 \sqrt{459 y}-8 \sqrt{140 y} = 26\sqrt{51y}-16\sqrt{35y}
\]
If you have any further questions or need additional assistance, feel free to ask!
Respondido por UpStudy AI y revisado por un tutor profesional

Explicar

Simplifique esta solución