Use the definition of the definite integral to evaluate \( \int_{0}^{6}\left(x^{2}-6\right) d x \) Evaluate the right Riemann Sum. Choose the correct answer below. A. \( \int_{a}^{b} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{6}{n}\right)^{2}-6\right) \frac{6 k}{n} \) B. \( \int_{a}^{b} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{n}{6 k}\right)^{2}-6\right) \frac{n}{6} \) c. \( \int_{a}^{b} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{n}{6}\right)^{2}-6\right) \frac{n}{6 k} \) D. \( \int_{a}^{b} f(x) d x=\lim _{\Delta \rightarrow 0} \sum_{k=1}^{n} f\left(x_{k}^{*}\right) \Delta x_{k}=\lim _{n \rightarrow \infty} \sum_{k=1}^{n}\left(\left(\frac{6 k}{n}\right)^{2} \cdot-6\right) \frac{6}{n} \) Evaluate the integral. \[ \int_{0}^{6}\left(x^{2}-6\right) d x=\square \text { (Simplify your answer.) } \]
Upstudy AI Solution
Answer
Solution
Answered by UpStudy AI and reviewed by a Professional Tutor


Beyond the Answer
To evaluate the definite integral \( \int_{0}^{6} (x^2 - 6) \, dx \), we start by finding the antiderivative of the function \( f(x) = x^2 - 6 \). The antiderivative is \( F(x) = \frac{x^3}{3} - 6x \). Next, we apply the Fundamental Theorem of Calculus: \[ \int_{0}^{6} (x^2 - 6) \, dx = F(6) - F(0) = \left( \frac{6^3}{3} - 6 \cdot 6 \right) - \left( \frac{0^3}{3} - 6 \cdot 0 \right). \] Calculating \( F(6) \): \[ F(6) = \frac{216}{3} - 36 = 72 - 36 = 36. \] Since \( F(0) = 0 \), we have: \[ \int_{0}^{6} (x^2 - 6) \, dx = 36 - 0 = 36. \] Now, let’s evaluate the right Riemann sum. The choice that reflects this is option D: \[ \int_{a}^{b} f(x) \, dx = \lim_{\Delta \to 0} \sum_{k=1}^{n} f\left(x_k^*\right) \Delta x_k = \lim_{n \to \infty} \sum_{k=1}^{n} \left(\left(\frac{6k}{n}\right)^{2} - 6\right) \frac{6}{n}. \] Finally, the evaluated definite integral is: \[ \int_{0}^{6} (x^2 - 6) \, dx = 36. \]