Question
upstudy study bank question image url

3. \( \int \frac{\cos x}{\operatorname{sen}^{2} x} d x \)

Ask by Reese Wade. in Mexico
Jan 30,2025

Upstudy AI Solution

Tutor-Verified Answer

Answer

La integral es \( -\csc(x) + C \).

Solution

Calculate the integral \( \int \frac{\cos x}{\sin^{2} x} dx \). Evaluate the integral by following steps: - step0: Evaluate using substitution: \(\int \frac{\cos\left(x\right)}{\sin^{2}\left(x\right)} dx\) - step1: Use the substitution \(dx=\frac{1}{\cos\left(x\right)} dt\) to transform the integral\(:\) \(\int \frac{\cos\left(x\right)}{\sin^{2}\left(x\right)}\times \frac{1}{\cos\left(x\right)} dt\) - step2: Simplify: \(\int \frac{1}{\sin^{2}\left(x\right)} dt\) - step3: Use the substitution \(t=\sin\left(x\right)\) to transform the integral\(:\) \(\int \frac{1}{t^{2}} dt\) - step4: Evaluate the integral: \(\frac{t^{-2+1}}{-2+1}\) - step5: Add the numbers: \(\frac{t^{-1}}{-2+1}\) - step6: Add the numbers: \(\frac{t^{-1}}{-1}\) - step7: Divide the terms: \(-t^{-1}\) - step8: Express with a positive exponent: \(-\frac{1}{t}\) - step9: Substitute back: \(-\frac{1}{\sin\left(x\right)}\) - step10: Rewrite the expression: \(-\sin^{-1}\left(x\right)\) - step11: Rewrite the expression: \(-\csc\left(x\right)\) - step12: Add the constant of integral C: \(-\csc\left(x\right) + C, C \in \mathbb{R}\) La integral de \( \frac{\cos x}{\sin^{2} x} \) con respecto a \( x \) es \( -\csc(x) + C \), donde \( C \) es una constante real.

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

To solve the integral \( \int \frac{\cos x}{\sin^2 x} \, dx \), we can rewrite it using the fact that \( \frac{1}{\sin^2 x} = \csc^2 x \). Therefore, the integral becomes \( \int \cos x \cdot \csc^2 x \, dx \). Now, we can use substitution; let's set \( u = \sin x \). Then, \( du = \cos x \, dx \). This transforms the integral into \( \int \frac{1}{u^2} \, du \), which is easier to integrate: \[ \int u^{-2} \, du = -\frac{1}{u} + C = -\frac{1}{\sin x} + C. \] So the final answer is: \[ -\csc x + C. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy