Question
upstudy study bank question image url

h) \( f(x)=(1-\ln x) /(1+\ln x) \)

Ask by Nunez Haynes. in Argentina
Nov 21,2024

Upstudy AI Solution

Tutor-Verified Answer

Answer

La función \( f(x) = \frac{1 - \ln x}{1 + \ln x} \) tiene un dominio de \( x > 0 \). En el punto crítico \( x = 1 \), la función alcanza un máximo de 1. A medida que \( x \) se aproxima a 0 o a infinito, \( f(x) \) se aproxima a -1.

Solution

Para analizar la función \( f(x) = \frac{1 - \ln x}{1 + \ln x} \), primero debemos considerar su dominio. La función \( \ln x \) está definida para \( x > 0 \). Por lo tanto, el dominio de \( f(x) \) es \( x > 0 \). ### Análisis de la función 1. **Dominio**: \( x > 0 \) 2. **Comportamiento en los límites**: - Cuando \( x \to 0^+ \): \[ \ln x \to -\infty \implies f(x) = \frac{1 - (-\infty)}{1 + (-\infty)} = \frac{\infty}{-\infty} \text{ (indeterminado)} \] Para un análisis más detallado, podemos observar que \( f(x) \to -1 \) cuando \( x \to 0^+ \). - Cuando \( x \to \infty \): \[ \ln x \to \infty \implies f(x) = \frac{1 - \infty}{1 + \infty} = \frac{-\infty}{\infty} \text{ (indeterminado)} \] En este caso, \( f(x) \to -1 \) cuando \( x \to \infty \). 3. **Puntos críticos**: Para encontrar los puntos críticos, derivamos \( f(x) \) y buscamos donde la derivada es cero o no está definida. La derivada de \( f(x) \) se puede calcular usando la regla del cociente: \[ f'(x) = \frac{(1 + \ln x)(\frac{1}{x}) - (1 - \ln x)(\frac{1}{x})}{(1 + \ln x)^2} \] Simplificando, obtenemos: \[ f'(x) = \frac{(1 + \ln x) - (1 - \ln x)}{x(1 + \ln x)^2} = \frac{2 \ln x}{x(1 + \ln x)^2} \] La derivada es cero cuando \( \ln x = 0 \), es decir, \( x = 1 \). 4. **Evaluación en el punto crítico**: \[ f(1) = \frac{1 - \ln 1}{1 + \ln 1} = \frac{1 - 0}{1 + 0} = 1 \] 5. **Comportamiento de la función**: - Para \( 0 < x < 1 \), \( \ln x < 0 \) y \( f(x) > 1 \). - Para \( x = 1 \), \( f(1) = 1 \). - Para \( x > 1 \), \( \ln x > 0 \) y \( f(x) < 1 \). ### Conclusión La función \( f(x) = \frac{1 - \ln x}{1 + \ln x} \) tiene un máximo en \( x = 1 \) donde \( f(1) = 1 \). A medida que \( x \) se aproxima a 0 desde la derecha, \( f(x) \) se aproxima a -1, y a medida que \( x \) tiende a infinito, también se aproxima a -1. La función es continua en su dominio \( (0, \infty) \).

Answered by UpStudy AI and reviewed by a Professional Tutor

error msg
Explain
Simplify this solution

Mind Expander

Did you know that the function \( f(x)=(1-\ln x)/(1+\ln x) \) represents a transformation of the natural logarithm? It's a great example of how functions can be manipulated! This particular function compresses the output of the logarithm, features asymptotic behavior, and can even exhibit a value of zero at specific points, providing interesting insights into the relations between logarithmic scales and their transformations. In practice, this function can be useful in scenarios such as signal processing or data normalization, where logarithmic scales are commonly utilized. By applying \( f(x) \), you can transform data points that have a wide range or exponential growth, making them more manageable and easier to analyze. Just keep in mind the domain restrictions, such as \( x > 0 \) to keep the logarithm defined!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy