Question
Using substitution, evaluate the integral ∫(x sin(x^2)) dx.
Ask by Kelly Schneider. in Turkey
Nov 21,2024
Upstudy AI Solution
Tutor-Verified Answer
Answer
\[
\int x \sin(x^2) \, dx = -\frac{1}{2} \cos(x^2) + C
\]
Solution
Verilen integrali çözmek için, \( u \) değişkenini \( u = x^2 \) olarak seçelim. Bu durumda, \( du = 2x \, dx \) veya \( dx = \frac{du}{2x} \) olur. Ancak, \( x \) ifadesini \( u \) cinsinden ifade etmemiz gerekiyor. Buradan \( x = \sqrt{u} \) elde ederiz.
Şimdi integralimizi yeniden yazalım:
\[
\int x \sin(x^2) \, dx = \int x \sin(u) \cdot \frac{du}{2x}
\]
Burada \( x \) terimleri birbirini götürür:
\[
= \int \frac{1}{2} \sin(u) \, du
\]
Bu integrali çözelim:
\[
= \frac{1}{2} \int \sin(u) \, du = -\frac{1}{2} \cos(u) + C
\]
Son olarak, \( u \) değerini \( x^2 \) ile değiştirelim:
\[
= -\frac{1}{2} \cos(x^2) + C
\]
Sonuç olarak, integralin değeri:
\[
\int x \sin(x^2) \, dx = -\frac{1}{2} \cos(x^2) + C
\]
Answered by UpStudy AI and reviewed by a Professional Tutor
Like
error msg


Bonus Knowledge
To evaluate the integral ∫(x sin(x²)) dx using substitution, we can let u = x². Then, the derivative du = 2x dx, or x dx = (1/2) du. Now the integral becomes: ∫ (x sin(x²)) dx = ∫ (sin(u) * (1/2) du) = (1/2) ∫ sin(u) du. This integral can be solved easily: (1/2)(-cos(u)) + C = -(1/2) cos(x²) + C. So, ∫(x sin(x²)) dx = -(1/2) cos(x²) + C. Remember to always check your work by differentiating your result to ensure it matches the integrand!